matthews_corr_coeff#
- rojak.turbulence.metrics.matthews_corr_coeff(truth: Array | None = None, prediction: Array | None = None, confuse_matrix: NDArray | None = None) float[source]#
Compute the Matthew’s Correlation Coefficient
- Parameters:
truth (Array | None) – dask array of shape (n_samples,) Ground truth (correct) target values.
prediction (Array | None) – dask array of shape (n_samples,) Estimated targets as returned by a classifier.
confuse_matrix (NDArray | None) – Numpy array of shape (2, 2) Result from computing the confusion matrix using
confusion_matrix(). If this isNone, then the result is computed usingconfusion_matrix()usingtruthandprediction.
- Return type:
Returns:
Examples
Example from Wikipedia page on Matthew’s Correlation Coefficient
>>> actual = da.asarray([1,1,1,1,1,1,1,1,0,0,0,0]) >>> pred = da.asarray([0,0,1,1,1,1,1,1,0,0,0,1]) >>> float(matthews_corr_coeff(truth=actual, prediction=pred)) 0.478 >>> float(matthews_corr_coeff(confuse_matrix=confusion_matrix(actual, pred))) 0.478