Frontogenesis2D#

class rojak.turbulence.diagnostic.Frontogenesis2D(u_wind: DataArray, v_wind: DataArray, potential_temperature: DataArray, geopotential: DataArray, vector_derivatives: dict[VelocityDerivative, DataArray])[source]#

Bases: Diagnostic

Two-dimensional frontogenesis CAT diagnostic

Assuming a constant pressure surface and that the atmosphere is adiabatic, the frontogenesis function can be defined in two dimensions. It is defined in [Bluestein1993] (p. 242) as,

\[F = - \frac{1}{\left| \nabla_{p} \theta \right|} \left[\left( \frac{ \partial \theta }{ \partial x } \right)^{2} \frac{ \partial u }{ \partial x } + \frac{ \partial \theta }{ \partial y }\frac{ \partial \theta }{ \partial x } \frac{ \partial v }{ \partial x } + \frac{ \partial \theta }{ \partial x }\frac{ \partial \theta }{ \partial y } \frac{ \partial u }{ \partial y } + \left( \frac{ \partial \theta }{ \partial y } \right)^{2} \frac{ \partial v }{ \partial y }\right]\]

where the subscript \(p\) indicates that the gradient is taken on a constant pressure surface.

Parameters:
__init__(u_wind: DataArray, v_wind: DataArray, potential_temperature: DataArray, geopotential: DataArray, vector_derivatives: dict[VelocityDerivative, DataArray]) None[source]#
Parameters:
Return type:

None

Methods

__init__(u_wind, v_wind, ...)

Attributes

computed_value

name