Metrics (rojak.turbulence.metrics)#

Functions

accuracy([truth, prediction, confuse_matrix])

Compute the Accuracy (ACC)

area_under_curve(x_values, y_values)

Area under the curve

binary_classification_curve(sorted_truth, ...)

Binary classification curve

binary_classification_rate_from_cumsum(...)

Binary classification curve with cumulative sum on labels

confusion_matrix(truth, prediction)

Compute the confusion matrix

contingency_table(first_var, second_var, ...)

Contingency Table for multidimensional arrays

critical_success_index([truth, prediction, ...])

Compute the Critical Success Index (CSI) or the Jaccard Similarity Coefficient Score

f1_score([truth, prediction, confuse_matrix])

Compute the F1 Score

gilbert_skill_score([truth, prediction, ...])

Compute the Gilbt Skill Score

jaccard_index_multidim(first_var, ...)

Jaccard Index or Critical Success Index for multidimensional data

matthews_corr_coeff([truth, prediction, ...])

Compute the Matthew's Correlation Coefficient

matthews_corr_coeff_multidim(first_var, ...)

Matthews Correlation Coefficient for multidimensional arrays

mean_absolute_error(truth, prediction)

Mean Absolute Error (MAE)

received_operating_characteristic(...[, ...])

Received operating characteristic or ROC curve

sensitivity(true_positive, false_negative)

Sensitivity statistical metric

specificity(true_negative, false_positive)

Specificity statistical metric :param true_negative: :param false_positive:

true_skill_score([truth, prediction, ...])

True Skill Score (TSS) statistic

Classes

BinaryClassificationRateFromLabels(...)

Create new instance of BinaryClassificationRateFromLabels(true_positives_rate, false_positives_rate)

BinaryClassificationResult(false_positives, ...)

Create new instance of BinaryClassificationResult(false_positives, true_positives, thresholds)

ContingencyTable(n_00, n_11, n_01, n_10)

Create new instance of ContingencyTable(n_00, n_11, n_01, n_10)