References#

[Sharman2006]

Sharman, R. D., Tebaldi, C., Wiener, G., & Wolff, J. (2006). An Integrated Approach to Mid- and Upper-Level Turbulence Forecasting. Weather and Forecasting, 21(3), 268–287. https://doi.org/10.1175/WAF924.1

[Sharman2017]

Sharman, R. D., & Pearson, J. M. (2017). Prediction of Energy Dissipation Rates for Aviation Turbulence. Part I: Forecasting Nonconvective Turbulence. Journal of Applied Meteorology and Climatology, 56(2), 317–337. https://doi.org/10.1175/JAMC-D-16-0205.1

[Reap1996]

Reap, R., M. (1996). Probability Forecasts of Clear-AIr-Turbulence for Contiguous US. National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Retrieved from https://vlab.noaa.gov/documents/6609493/36173388/TPB_430.pdf

[Roach1970]

Roach, W. T. (1970). On the influence of synoptic development on the production of high level turbulence. Quarterly Journal of the Royal Meteorological Society, 96(409), 413–429. https://doi.org/10.1002/qj.49709640906

[Brown1973]

Brown, R. (1973). New indices to locate clear-air turbulence. Meteorological Magazine (UK), 102, 347–361. https://library.metoffice.gov.uk/Portal/Default/en-GB/RecordView/Index/519828

[GillBuchanan2014]

Gill, P. G., & Buchanan, P. (2014). An ensemble based turbulence forecasting system. Meteorological Applications, 21(1), 12–19. https://doi.org/10.1002/met.1373

[Kaplan2005a]

Kaplan, M. L., Huffman, A. W., Lux, K. M., Charney, J. J., Riordan, A. J., & Lin, Y.-L. (2005). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteorology and Atmospheric Physics, 88(3), 129–152. https://doi.org/10.1007/s00703-004-0080-0

[Kaplan2005b]

Kaplan, M. L., Huffman, A. W., Lux, K. M., Cetola, J. D., Charney, J. J., Riordan, A. J., et al. (2005). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of supergradient wind flow and streamwise ageostrophic frontogenesis. Meteorology and Atmospheric Physics, 88(3), 153–173. https://doi.org/10.1007/s00703-004-0079-6

[Kaplan2006]

Kaplan, M. L., Charney, J. J., Waight, K. T., Lux, K. M., Cetola, J. D., Huffman, A. W., et al. (2006). Characterizing the severe turbulence environments associated with commercial aviation accidents. A real-time turbulence model (RTTM) designed for the operational prediction of hazardous aviation turbulence environments. Meteorology and Atmospheric Physics, 94(1), 235–270. https://doi.org/10.1007/s00703-005-0181-4

[Bluestein1992]

Bluestein, H. B. (1992). Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics (Vol. Principles of Kinematics and Dynamics). Oxford University Press, USA.

[Bluestein1993]

Bluestein, H. B. (1993). Synoptic-dynamic Meteorology in Midlatitudes: Observations and theory of weather systems (Vol. Observations and theory of weather systems). Taylor & Francis.

[Bechtold2021]

Bechtold, P., Bramberger, M., Dörnbrack, A., Isaken, L., & Leutbecher, M. (2021). Experimenting with a Clear Air Turbulence (CAT) Index from the IFS (Technical memorandum No. 874). European Centre for Medium-Range Weather Forecasts (ECMWF). Retrieved from https://www.ecmwf.int/en/elibrary/81205-experimenting-clear-air-turbulence-cat-index-ifs

[Ellrod1992]

Ellrod, G. P., & Knapp, D. I. (1992). An Objective Clear-Air Turbulence Forecasting Technique: Verification and Operational Use. Weather and Forecasting, 7(1), 150–165. https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2

[Mancuso1966]

Mancuso, R. L., & Endlich, R. M. (1966). Clear Air Turbulence Frequency as a Function of Wind Shear and Deformation. Monthly Weather Review, 94(9), 581–585. https://doi.org/10.1175/1520-0493(1966)094<0581:CATFAA>2.3.CO;2

[Knox2016]

Knox, J. A., Black, A. W., Rackley, J. A., Wilson, E., Grant, J. S., Phelps, S. P., et al. (2016). Automated Turbulence Forecasting Strategies. In Aviation Turbulence: Processes, Detection, Prediction (pp. 243–260). Cham, SWITZERLAND: Springer International Publishing AG. Retrieved from http://ebookcentral.proquest.com/lib/imperial/detail.action?docID=4572260

[Knox2001]

Knox, J. A. (2001). The breakdown of balance in low potential vorticity regions: Evidence from a clear air turbulence outbreak. Presented at the 13th Conference on Atmospheric and Oceanic Fluid Dynamics, AMS. Retrieved from https://ams.confex.com/ams/13FLUID/webprogram/Paper21099.html

[Endlich1964]

Endlich, R. M. (1964). The Mesoscale Structure of Some Regions of Clear-Air Turbulence. Journal of Applied Meteorology and Climatology, 3(3), 261–276. https://doi.org/10.1175/1520-0450(1964)003<0261:TMSOSR>2.0.CO;2

[Colson1965]

Colson, D., & Panofsky, H. A. (1965). An index of clear air turbulence. Quarterly Journal of the Royal Meteorological Society, 91(390), 507–513. https://doi.org/10.1002/qj.49709139010

[Dutton1980]

Dutton, M. J. O. (1980). Probability forecasts of clear-air turbulence based on numerical model output. Meteorological Magazine (UK), 109(1299), 293–310.

[Williams2017]

Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in Atmospheric Sciences, 34(5), 576–586. https://doi.org/10.1007/s00376-017-6268-2

[Wallace2006]

Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. San Diego, UNITED STATES: Elsevier Science & Technology.

[NACA3182]

Manual of the ICAO standard atmosphere calculations by the NACA. (1954, May 1). Retrieved from https://ntrs.nasa.gov/citations/19930083952