Documentation

Mathlib.CategoryTheory.Triangulated.Yoneda

The Yoneda functors are homological #

Let C be a pretriangulated category. In this file, we show that the functors preadditiveCoyoneda.obj A : C ⥤ AddCommGrp for A : Cᵒᵖ and preadditiveYoneda.obj B : Cᵒᵖ ⥤ AddCommGrp for B : C are homological functors.

theorem CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.HasShift C ] (T : CategoryTheory.Pretriangulated.Triangle C) (n₀ : ) (n₁ : ) (h : n₀ + 1 = n₁) {A : Cᵒᵖ} (x : Opposite.unop A (CategoryTheory.shiftFunctor C n₀).obj T.obj₃) :
((CategoryTheory.preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x = CategoryTheory.CategoryStruct.comp x (CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C n₀).map T.mor₃) ((CategoryTheory.shiftFunctorAdd' C 1 n₀ n₁ ).inv.app T.obj₁))
Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.HasShift C ] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] (B : C) {X : Cᵒᵖ} {Y : Cᵒᵖ} (n : ) (f : X (CategoryTheory.shiftFunctor Cᵒᵖ n).obj Y) (a : ) (a' : ) (h : n + a = a') (z : Opposite.unop X (CategoryTheory.shiftFunctor C a).obj B) :
((CategoryTheory.preadditiveYoneda.obj B).shiftMap f a a' h) z = ((CategoryTheory.ShiftedHom.opEquiv n).symm f).comp z
theorem CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.HasShift C ] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] (T : CategoryTheory.Pretriangulated.Triangle C) (n₀ : ) (n₁ : ) (h : n₀ + 1 = n₁) {B : C} (x : T.obj₁ (CategoryTheory.shiftFunctor C n₀).obj B) :
((CategoryTheory.preadditiveYoneda.obj B).homologySequenceδ ((CategoryTheory.Pretriangulated.triangleOpEquivalence C).functor.obj (Opposite.op T)) n₀ n₁ h) x = CategoryTheory.CategoryStruct.comp T.mor₃ (CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C 1).map x) ((CategoryTheory.shiftFunctorAdd' C n₀ 1 n₁ h).inv.app B))