The Yoneda functors are homological #
Let C
be a pretriangulated category. In this file, we show that the
functors preadditiveCoyoneda.obj A : C ⥤ AddCommGrp
for A : Cᵒᵖ
and
preadditiveYoneda.obj B : Cᵒᵖ ⥤ AddCommGrp
for B : C
are homological functors.
instance
CategoryTheory.Pretriangulated.instIsHomologicalAddCommGrpObjOppositeFunctorPreadditiveCoyoneda
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[CategoryTheory.Limits.HasZeroObject C]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(A : Cᵒᵖ)
:
(CategoryTheory.preadditiveCoyoneda.obj A).IsHomological
instance
CategoryTheory.Pretriangulated.instIsHomologicalOppositeAddCommGrpObjFunctorPreadditiveYoneda
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[CategoryTheory.Limits.HasZeroObject C]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(B : C)
:
(CategoryTheory.preadditiveYoneda.obj B).IsHomological
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[CategoryTheory.Limits.HasZeroObject C]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
[CategoryTheory.Pretriangulated C]
(T : CategoryTheory.Pretriangulated.Triangle C)
(hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles)
(B : C)
:
((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).op.map (CategoryTheory.preadditiveYoneda.obj B)).Exact
noncomputable instance
CategoryTheory.Pretriangulated.instShiftSequenceAddCommGrpObjOppositeFunctorPreadditiveCoyonedaInt
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
(A : Cᵒᵖ)
:
(CategoryTheory.preadditiveCoyoneda.obj A).ShiftSequence ℤ
theorem
CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
(T : CategoryTheory.Pretriangulated.Triangle C)
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
{A : Cᵒᵖ}
(x : Opposite.unop A ⟶ (CategoryTheory.shiftFunctor C n₀).obj T.obj₃)
:
((CategoryTheory.preadditiveCoyoneda.obj A).homologySequenceδ T n₀ n₁ h) x = CategoryTheory.CategoryStruct.comp x
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C n₀).map T.mor₃)
((CategoryTheory.shiftFunctorAdd' C 1 n₀ n₁ ⋯).inv.app T.obj₁))
noncomputable instance
CategoryTheory.Pretriangulated.instShiftSequenceOppositeAddCommGrpObjFunctorPreadditiveYonedaInt
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
(B : C)
:
(CategoryTheory.preadditiveYoneda.obj B).ShiftSequence ℤ
Equations
- One or more equations did not get rendered due to their size.
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
(B : C)
{X Y : Cᵒᵖ}
(n : ℤ)
(f : X ⟶ (CategoryTheory.shiftFunctor Cᵒᵖ n).obj Y)
(a a' : ℤ)
(h : n + a = a')
(z : Opposite.unop X ⟶ (CategoryTheory.shiftFunctor C a).obj B)
:
((CategoryTheory.preadditiveYoneda.obj B).shiftMap f a a' h) z = ((CategoryTheory.ShiftedHom.opEquiv n).symm f).comp z ⋯
theorem
CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.HasShift C ℤ]
[∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive]
(T : CategoryTheory.Pretriangulated.Triangle C)
(n₀ n₁ : ℤ)
(h : n₀ + 1 = n₁)
{B : C}
(x : T.obj₁ ⟶ (CategoryTheory.shiftFunctor C n₀).obj B)
:
((CategoryTheory.preadditiveYoneda.obj B).homologySequenceδ
((CategoryTheory.Pretriangulated.triangleOpEquivalence C).functor.obj (Opposite.op T)) n₀ n₁ h)
x = CategoryTheory.CategoryStruct.comp T.mor₃
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C 1).map x)
((CategoryTheory.shiftFunctorAdd' C n₀ 1 n₁ h).inv.app B))