Documentation

Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects

Zero objects #

A category "has a zero object" if it has an object which is both initial and terminal. Having a zero object provides zero morphisms, as the unique morphisms factoring through the zero object; see CategoryTheory.Limits.Shapes.ZeroMorphisms.

References #

An object X in a category is a zero object if for every object Y there is a unique morphism to : X → Y and a unique morphism from : Y → X.

This is a characteristic predicate for has_zero_object.

  • unique_to (Y : C) : Nonempty (Unique (X Y))

    there are unique morphisms to the object

  • unique_from (Y : C) : Nonempty (Unique (Y X))

    there are unique morphisms from the object

Instances For

    If h : IsZero X, then h.to_ Y is a choice of unique morphism X → Y.

    Equations
    Instances For

      If h : is_zero X, then h.from_ Y is a choice of unique morphism Y → X.

      Equations
      Instances For

        Any two zero objects are isomorphic.

        Equations
        • hX.iso hY = { hom := hX.to_ Y, inv := hX.from_ Y, hom_inv_id := , inv_hom_id := }
        Instances For

          The (unique) isomorphism between any initial object and the zero object.

          Equations
          • hX.isoIsInitial hY = hX.isInitial.uniqueUpToIso hY
          Instances For

            The (unique) isomorphism between any terminal object and the zero object.

            Equations
            • hX.isoIsTerminal hY = hX.isTerminal.uniqueUpToIso hY
            Instances For

              A category "has a zero object" if it has an object which is both initial and terminal.

              Instances

                Construct a Zero C for a category with a zero object. This can not be a global instance as it will trigger for every Zero C typeclass search.

                Equations
                Instances For

                  Every zero object is isomorphic to the zero object.

                  Equations
                  • hX.isoZero = hX.iso
                  Instances For

                    There is a unique morphism from the zero object to any object X.

                    Equations
                    Instances For

                      There is a unique morphism from any object X to the zero object.

                      Equations
                      Instances For