Shifted morphisms in the opposite category
If C
is a category equipped with a shift by ℤ
, X
and Y
are objects
of C
, and n : ℤ
, we define a bijection
ShiftedHom.opEquiv : ShiftedHom X Y n ≃ ShiftedHom (Opposite.op Y) (Opposite.op X) n
.
We also introduce ShiftedHom.opEquiv'
which produces a bijection
ShiftedHom X Y a' ≃ (Opposite.op (Y⟦a⟧) ⟶ (Opposite.op X)⟦n⟧)
when n + a = a'
.
The compatibilities that are obtained shall be used in order to study
the homological functor preadditiveYoneda.obj B : Cᵒᵖ ⥤ Type _
when B
is an object
in a pretriangulated category C
.
The bijection ShiftedHom X Y n ≃ ShiftedHom (Opposite.op Y) (Opposite.op X) n
when
n : ℤ
, and X
and Y
are objects of a category equipped with a shift by ℤ
.
Equations
- CategoryTheory.ShiftedHom.opEquiv n = Quiver.Hom.opEquiv.trans ((CategoryTheory.Pretriangulated.opShiftFunctorEquivalence C n).symm.toAdjunction.homEquiv (Opposite.op Y) (Opposite.op X))
Instances For
The bijection ShiftedHom X Y a' ≃ (Opposite.op (Y⟦a⟧) ⟶ (Opposite.op X)⟦n⟧)
when integers n
, a
and a'
satisfy n + a = a'
, and X
and Y
are objects
of a category equipped with a shift by ℤ
.
Equations
- CategoryTheory.ShiftedHom.opEquiv' n a a' h = ((CategoryTheory.shiftFunctorAdd' C a n a' ⋯).symm.app Y).homToEquiv.symm.trans (CategoryTheory.ShiftedHom.opEquiv n)