Shifted morphisms
Given a category C
endowed with a shift by an additive monoid M
and two
objects X
and Y
in C
, we consider the types ShiftedHom X Y m
defined as X ⟶ (Y⟦m⟧)
for all m : M
, and the composition on these
shifted hom.
TODO #
- redefine Ext-groups in abelian categories using
ShiftedHom
in the derived category. - study the
R
-module structures onShiftedHom
whenC
isR
-linear
In a category C
equipped with a shift by an additive monoid,
this is the type of morphisms X ⟶ (Y⟦n⟧)
for m : M
.
Equations
- CategoryTheory.ShiftedHom X Y m = (X ⟶ (CategoryTheory.shiftFunctor C m).obj Y)
Instances For
Equations
- CategoryTheory.instAddCommGroupShiftedHomOfPreadditive X Y n = id inferInstance
The composition of f : X ⟶ Y⟦a⟧
and g : Y ⟶ Z⟦b⟧
, as a morphism X ⟶ Z⟦c⟧
when b + a = c
.
Equations
- f.comp g h = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor C a).map g) ((CategoryTheory.shiftFunctorAdd' C b a c h).inv.app Z))
Instances For
In degree 0 : M
, shifted hom ShiftedHom X Y 0
identify to morphisms X ⟶ Y
.
We generalize this to m₀ : M
such that m₀ : 0
as it shall be convenient when we
apply this with M := ℤ
and m₀
the coercion of 0 : ℕ
.
The element of ShiftedHom X Y m₀
(when m₀ = 0
) attached to a morphism X ⟶ Y
.
Equations
- CategoryTheory.ShiftedHom.mk₀ m₀ hm₀ f = CategoryTheory.CategoryStruct.comp f ((CategoryTheory.shiftFunctorZero' C m₀ hm₀).inv.app Y)
Instances For
The bijection (X ⟶ Y) ≃ ShiftedHom X Y m₀
when m₀ = 0
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The action on ShiftedHom
of a functor which commutes with the shift.
Equations
- f.map F = CategoryTheory.CategoryStruct.comp (F.map f) ((F.commShiftIso a).hom.app Y)