Splitting fields #
This file introduces the notion of a splitting field of a polynomial and provides an embedding from
a splitting field to any field that splits the polynomial. A polynomial f : K[X]
splits
over a field extension L
of K
if it is zero or all of its irreducible factors over L
have
degree 1
. A field extension of K
of a polynomial f : K[X]
is called a splitting field
if it is the smallest field extension of K
such that f
splits.
Main definitions #
Polynomial.IsSplittingField
: A predicate on a field to be a splitting field of a polynomialf
.
Main statements #
Polynomial.IsSplittingField.lift
: An embedding of a splitting field of the polynomialf
into another field such thatf
splits.
class
Polynomial.IsSplittingField
(K : Type v)
(L : Type w)
[Field K]
[Field L]
[Algebra K L]
(f : Polynomial K)
:
Typeclass characterising splitting fields.
Stacks Tag 09HV (Predicate version)
- splits' : Polynomial.Splits (algebraMap K L) f
- adjoin_rootSet' : Algebra.adjoin K (f.rootSet L) = ⊤
Instances
theorem
Polynomial.IsSplittingField.splits
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Algebra K L]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
:
Polynomial.Splits (algebraMap K L) f
theorem
Polynomial.IsSplittingField.adjoin_rootSet
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Algebra K L]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
:
Algebra.adjoin K (f.rootSet L) = ⊤
instance
Polynomial.IsSplittingField.map
{F : Type u}
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Field F]
[Algebra K L]
[Algebra F K]
[Algebra F L]
[IsScalarTower F K L]
(f : Polynomial F)
[Polynomial.IsSplittingField F L f]
:
Polynomial.IsSplittingField K L (Polynomial.map (algebraMap F K) f)
theorem
Polynomial.IsSplittingField.splits_iff
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Algebra K L]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
:
Polynomial.Splits (RingHom.id K) f ↔ ⊤ = ⊥
theorem
Polynomial.IsSplittingField.mul
{F : Type u}
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Field F]
[Algebra K L]
[Algebra F K]
[Algebra F L]
[IsScalarTower F K L]
(f g : Polynomial F)
(hf : f ≠ 0)
(hg : g ≠ 0)
[Polynomial.IsSplittingField F K f]
[Polynomial.IsSplittingField K L (Polynomial.map (algebraMap F K) g)]
:
Polynomial.IsSplittingField F L (f * g)
def
Polynomial.IsSplittingField.lift
{F : Type u}
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Field F]
[Algebra K L]
[Algebra K F]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
(hf : Polynomial.Splits (algebraMap K F) f)
:
Splitting field of f
embeds into any field that splits f
.
Equations
- Polynomial.IsSplittingField.lift L f hf = if hf0 : f = 0 then (Algebra.ofId K F).comp ((↑(Algebra.botEquiv K L)).comp (⋯.mpr Algebra.toTop)) else (⋯.mpr (Classical.choice ⋯)).comp Algebra.toTop
Instances For
theorem
Polynomial.IsSplittingField.finiteDimensional
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Algebra K L]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
:
theorem
Polynomial.IsSplittingField.of_algEquiv
{F : Type u}
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Field F]
[Algebra K L]
[Algebra K F]
(p : Polynomial K)
(f : F ≃ₐ[K] L)
[Polynomial.IsSplittingField K F p]
:
theorem
Polynomial.IsSplittingField.adjoin_rootSet_eq_range
{F : Type u}
{K : Type v}
(L : Type w)
[Field K]
[Field L]
[Field F]
[Algebra K L]
[Algebra K F]
(f : Polynomial K)
[Polynomial.IsSplittingField K L f]
(i : L →ₐ[K] F)
:
Algebra.adjoin K (f.rootSet F) = i.range
theorem
IntermediateField.splits_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
{F : IntermediateField K L}
(h : Polynomial.Splits (algebraMap K L) p)
(hF : ∀ x ∈ p.rootSet L, x ∈ F)
:
Polynomial.Splits (algebraMap K ↥F) p
theorem
IntermediateField.splits_iff_mem
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
{F : IntermediateField K L}
(h : Polynomial.Splits (algebraMap K L) p)
:
Polynomial.Splits (algebraMap K ↥F) p ↔ ∀ x ∈ p.rootSet L, x ∈ F
theorem
IsIntegral.mem_intermediateField_of_minpoly_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{x : L}
(int : IsIntegral K x)
{F : IntermediateField K L}
(h : Polynomial.Splits (algebraMap K ↥F) (minpoly K x))
:
x ∈ F
theorem
isSplittingField_iff_intermediateField
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
:
Polynomial.IsSplittingField K L p ↔ Polynomial.Splits (algebraMap K L) p ∧ IntermediateField.adjoin K (p.rootSet L) = ⊤
Characterize IsSplittingField
with IntermediateField.adjoin
instead of Algebra.adjoin
.
theorem
IntermediateField.isSplittingField_iff
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
{F : IntermediateField K L}
:
Polynomial.IsSplittingField K (↥F) p ↔ Polynomial.Splits (algebraMap K ↥F) p ∧ F = IntermediateField.adjoin K (p.rootSet L)
theorem
IntermediateField.adjoin_rootSet_isSplittingField
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
(hp : Polynomial.Splits (algebraMap K L) p)
:
Polynomial.IsSplittingField K (↥(IntermediateField.adjoin K (p.rootSet L))) p