Documentation

Mathlib.FieldTheory.IntermediateField.Adjoin.Algebra

Adjoining Elements to Fields #

This file relates IntermediateField.adjoin to Algebra.adjoin.

theorem IntermediateField.algebra_adjoin_le_adjoin (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : Set E) :
theorem IntermediateField.adjoin_eq_algebra_adjoin (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : Set E) (inv_mem : xAlgebra.adjoin F S, x⁻¹ Algebra.adjoin F S) :
theorem IntermediateField.eq_adjoin_of_eq_algebra_adjoin (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : Set E) (K : IntermediateField F E) (h : K.toSubalgebra = Algebra.adjoin F S) :
theorem IntermediateField.adjoin_algebraic_toSubalgebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {S : Set E} (hS : xS, IsAlgebraic F x) :
theorem IntermediateField.adjoin_simple_toSubalgebra_of_integral {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {α : E} (hα : IsIntegral F α) :
Fα.toSubalgebra = Algebra.adjoin F {α}
theorem IntermediateField.le_sup_toSubalgebra {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) :
E1.toSubalgebra E2.toSubalgebra (E1 E2).toSubalgebra
theorem IntermediateField.sup_toSubalgebra_of_isAlgebraic_right {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [Algebra.IsAlgebraic K E2] :
(E1 E2).toSubalgebra = E1.toSubalgebra E2.toSubalgebra
theorem IntermediateField.sup_toSubalgebra_of_isAlgebraic_left {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [Algebra.IsAlgebraic K E1] :
(E1 E2).toSubalgebra = E1.toSubalgebra E2.toSubalgebra
theorem IntermediateField.sup_toSubalgebra_of_isAlgebraic {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) (halg : Algebra.IsAlgebraic K E1 Algebra.IsAlgebraic K E2) :
(E1 E2).toSubalgebra = E1.toSubalgebra E2.toSubalgebra

The compositum of two intermediate fields is equal to the compositum of them as subalgebras, if one of them is algebraic over the base field.

theorem IntermediateField.sup_toSubalgebra_of_left {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K E1] :
(E1 E2).toSubalgebra = E1.toSubalgebra E2.toSubalgebra
theorem IntermediateField.sup_toSubalgebra_of_right {K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K E2] :
(E1 E2).toSubalgebra = E1.toSubalgebra E2.toSubalgebra
theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) (halg : Algebra.IsAlgebraic F E Algebra.IsAlgebraic F L) :
(IntermediateField.adjoin E L).toSubalgebra = Algebra.adjoin E L

If K / E / F is a field extension tower, L is an intermediate field of K / F, such that either E / F or L / F is algebraic, then E(L) = E[L].

theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_left {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) [halg : Algebra.IsAlgebraic F E] :
(IntermediateField.adjoin E L).toSubalgebra = Algebra.adjoin E L
theorem IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_right {F : Type u_1} [Field F] (E : Type u_2) [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (L : IntermediateField F K) [halg : Algebra.IsAlgebraic F L] :
(IntermediateField.adjoin E L).toSubalgebra = Algebra.adjoin E L
theorem IntermediateField.fg_of_fg_toSubalgebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : IntermediateField F E) (h : S.FG) :
S.FG
@[deprecated IntermediateField.fg_of_fg_toSubalgebra (since := "2024-10-28")]
theorem IntermediateField.fG_of_fG_toSubalgebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : IntermediateField F E) (h : S.FG) :
S.FG

Alias of IntermediateField.fg_of_fg_toSubalgebra.

theorem IntermediateField.fg_of_noetherian {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : IntermediateField F E) [IsNoetherian F E] :
S.FG
theorem IntermediateField.induction_on_adjoin {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] (P : IntermediateField F EProp) (base : P ) (ih : ∀ (K : IntermediateField F E) (x : E), P KP (IntermediateField.restrictScalars F (↥K)x)) (K : IntermediateField F E) :
P K
theorem IsFractionRing.algHom_fieldRange_eq_of_comp_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A →ₐ[F] L} {f : K →ₐ[F] L} (h : (↑f).comp (algebraMap A K) = g) :
f.fieldRange = IntermediateField.adjoin F g.range

If F is a field, A is an F-algebra with fraction field K, L is a field, g : A →ₐ[F] L lifts to f : K →ₐ[F] L, then the image of f is the field generated by the image of g. Note: this does not require IsScalarTower F A K.

theorem IsFractionRing.algHom_fieldRange_eq_of_comp_eq_of_range_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A →ₐ[F] L} {f : K →ₐ[F] L} (h : (↑f).comp (algebraMap A K) = g) {s : Set L} (hs : g.range = Algebra.adjoin F s) :
f.fieldRange = IntermediateField.adjoin F s

If F is a field, A is an F-algebra with fraction field K, L is a field, g : A →ₐ[F] L lifts to f : K →ₐ[F] L, s is a set such that the image of g is the subalgebra generated by s, then the image of f is the intermediate field generated by s. Note: this does not require IsScalarTower F A K.

theorem IsFractionRing.liftAlgHom_fieldRange {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A →ₐ[F] L} [IsScalarTower F A K] (hg : Function.Injective g) :

The image of IsFractionRing.liftAlgHom is the intermediate field generated by the image of the algebra hom.

theorem IsFractionRing.liftAlgHom_fieldRange_eq_of_range_eq {F : Type u_1} {A : Type u_2} {K : Type u_3} {L : Type u_4} [Field F] [CommRing A] [Algebra F A] [Field K] [Algebra F K] [Algebra A K] [IsFractionRing A K] [Field L] [Algebra F L] {g : A →ₐ[F] L} [IsScalarTower F A K] (hg : Function.Injective g) {s : Set L} (hs : g.range = Algebra.adjoin F s) :

The image of IsFractionRing.liftAlgHom is the intermediate field generated by s, if the image of the algebra hom is the subalgebra generated by s.