Documentation

Mathlib.Algebra.Algebra.Subalgebra.Basic

Subalgebras over Commutative Semiring #

In this file we define Subalgebras and the usual operations on them (map, comap).

The Algebra.adjoin operation and complete lattice structure can be found in Mathlib.Algebra.Algebra.Subalgebra.Lattice.

structure Subalgebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] extends Subsemiring A :

A subalgebra is a sub(semi)ring that includes the range of algebraMap.

Instances For
    instance Subalgebra.instSetLike {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] :
    Equations
    @[simp]
    theorem Subalgebra.mem_toSubsemiring {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S : Subalgebra R A} {x : A} :
    theorem Subalgebra.mem_carrier {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {s : Subalgebra R A} {x : A} :
    x s.carrier x s
    theorem Subalgebra.ext {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : ∀ (x : A), x S x T) :
    S = T
    theorem Subalgebra.ext_iff {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} :
    S = T ∀ (x : A), x S x T
    @[simp]
    theorem Subalgebra.coe_toSubsemiring {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
    S.toSubsemiring = S
    def Subalgebra.copy {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (s : Set A) (hs : s = S) :

    Copy of a subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

    Equations
    • S.copy s hs = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := }
    Instances For
      @[simp]
      theorem Subalgebra.coe_copy {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (s : Set A) (hs : s = S) :
      (S.copy s hs) = s
      @[simp]
      theorem Subalgebra.copy_toSubsemiring {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (s : Set A) (hs : s = S) :
      (S.copy s hs).toSubsemiring = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
      theorem Subalgebra.copy_eq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (s : Set A) (hs : s = S) :
      S.copy s hs = S
      theorem algebraMap_mem {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A] [OneMemClass S A] [SMulMemClass S R A] (s : S) (r : R) :
      (algebraMap R A) r s
      theorem Subalgebra.algebraMap_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (r : R) :
      (algebraMap R A) r S
      theorem Subalgebra.range_subset {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      Set.range (algebraMap R A) S
      theorem Subalgebra.range_le {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      Set.range (algebraMap R A) S
      theorem Subalgebra.smul_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : A} (hx : x S) (r : R) :
      r x S
      theorem Subalgebra.one_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      1 S
      theorem Subalgebra.mul_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x y : A} (hx : x S) (hy : y S) :
      x * y S
      theorem Subalgebra.pow_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : A} (hx : x S) (n : ) :
      x ^ n S
      theorem Subalgebra.zero_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
      0 S
      theorem Subalgebra.add_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x y : A} (hx : x S) (hy : y S) :
      x + y S
      theorem Subalgebra.nsmul_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : A} (hx : x S) (n : ) :
      n x S
      theorem Subalgebra.natCast_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (n : ) :
      n S
      theorem Subalgebra.list_prod_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {L : List A} (h : xL, x S) :
      L.prod S
      theorem Subalgebra.list_sum_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {L : List A} (h : xL, x S) :
      L.sum S
      theorem Subalgebra.multiset_sum_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {m : Multiset A} (h : xm, x S) :
      m.sum S
      theorem Subalgebra.sum_mem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {ι : Type w} {t : Finset ι} {f : ιA} (h : xt, f x S) :
      xt, f x S
      theorem Subalgebra.multiset_prod_mem {R : Type u} {A : Type v} [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) {m : Multiset A} (h : xm, x S) :
      m.prod S
      theorem Subalgebra.prod_mem {R : Type u} {A : Type v} [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) {ι : Type w} {t : Finset ι} {f : ιA} (h : xt, f x S) :
      xt, f x S

      Turn a Subalgebra into a NonUnitalSubalgebra by forgetting that it contains 1.

      Equations
      Instances For
        instance Subalgebra.instSubringClass {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] :
        theorem Subalgebra.neg_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) {x : A} (hx : x S) :
        -x S
        theorem Subalgebra.sub_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) {x y : A} (hx : x S) (hy : y S) :
        x - y S
        theorem Subalgebra.zsmul_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) {x : A} (hx : x S) (n : ) :
        n x S
        theorem Subalgebra.intCast_mem {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) (n : ) :
        n S

        The projection from a subalgebra of A to an additive submonoid of A.

        Equations
        Instances For
          @[simp]
          theorem Subalgebra.coe_toAddSubmonoid {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
          def Subalgebra.toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :

          A subalgebra over a ring is also a Subring.

          Equations
          Instances For
            @[simp]
            theorem Subalgebra.mem_toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : Subalgebra R A} {x : A} :
            @[simp]
            theorem Subalgebra.coe_toSubring {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
            S.toSubring = S
            theorem Subalgebra.toSubring_inj {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S U : Subalgebra R A} :
            instance Subalgebra.instInhabitedSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
            Equations

            Subalgebras inherit structure from their Subsemiring / Semiring coercions.

            instance Subalgebra.toSemiring {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
            Equations
            instance Subalgebra.toCommSemiring {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) :
            Equations
            instance Subalgebra.toRing {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
            Ring S
            Equations
            instance Subalgebra.toCommRing {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (S : Subalgebra R A) :
            Equations

            The forgetful map from Subalgebra to Submodule as an OrderEmbedding

            Equations
            • Subalgebra.toSubmodule = { toFun := fun (S : Subalgebra R A) => { carrier := S, add_mem' := , zero_mem' := , smul_mem' := }, inj' := , map_rel_iff' := }
            Instances For
              @[simp]
              theorem Subalgebra.mem_toSubmodule {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : A} :
              @[simp]
              theorem Subalgebra.coe_toSubmodule {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              (toSubmodule S) = S

              Subalgebras inherit structure from their Submodule coercions.

              @[instance 100]
              instance Subalgebra.module' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
              Module R' S
              Equations
              instance Subalgebra.instModuleSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              Module R S
              Equations
              instance Subalgebra.instIsScalarTowerSubtypeMem {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
              IsScalarTower R' R S
              @[instance 500]
              instance Subalgebra.algebra' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) [CommSemiring R'] [SMul R' R] [Algebra R' A] [IsScalarTower R' R A] :
              Algebra R' S
              Equations
              instance Subalgebra.algebra {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              Algebra R S
              Equations
              theorem Subalgebra.coe_add {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (x y : S) :
              ↑(x + y) = x + y
              theorem Subalgebra.coe_mul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (x y : S) :
              ↑(x * y) = x * y
              theorem Subalgebra.coe_zero {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              0 = 0
              theorem Subalgebra.coe_one {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              1 = 1
              theorem Subalgebra.coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : Subalgebra R A} (x : S) :
              ↑(-x) = -x
              theorem Subalgebra.coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : Subalgebra R A} (x y : S) :
              ↑(x - y) = x - y
              @[simp]
              theorem Subalgebra.coe_smul {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) [SMul R' R] [SMul R' A] [IsScalarTower R' R A] (r : R') (x : S) :
              ↑(r x) = r x
              @[simp]
              theorem Subalgebra.coe_algebraMap {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) [CommSemiring R'] [SMul R' R] [Algebra R' A] [IsScalarTower R' R A] (r : R') :
              ((algebraMap R' S) r) = (algebraMap R' A) r
              theorem Subalgebra.coe_pow {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (x : S) (n : ) :
              ↑(x ^ n) = x ^ n
              theorem Subalgebra.coe_eq_zero {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : S} :
              x = 0 x = 0
              theorem Subalgebra.coe_eq_one {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) {x : S} :
              x = 1 x = 1
              def Subalgebra.val {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
              S →ₐ[R] A

              Embedding of a subalgebra into the algebra.

              Equations
              • S.val = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
              Instances For
                @[simp]
                theorem Subalgebra.coe_val {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                theorem Subalgebra.val_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) (x : S) :
                S.val x = x
                @[simp]
                theorem Subalgebra.toSubsemiring_subtype {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                S.subtype = S.val
                @[simp]
                theorem Subalgebra.toSubring_subtype {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] (S : Subalgebra R A) :
                def Subalgebra.toSubmoduleEquiv {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                (toSubmodule S) ≃ₗ[R] S

                Linear equivalence between S : Submodule R A and S. Though these types are equal, we define it as a LinearEquiv to avoid type equalities.

                Equations
                Instances For
                  def Subalgebra.map {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R A) :

                  Transport a subalgebra via an algebra homomorphism.

                  Equations
                  Instances For
                    @[simp]
                    theorem Subalgebra.map_toSubsemiring {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R A) :
                    @[simp]
                    theorem Subalgebra.coe_map {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R A) :
                    (map f S) = f '' S
                    theorem Subalgebra.map_mono {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S₁ S₂ : Subalgebra R A} {f : A →ₐ[R] B} :
                    S₁ S₂map f S₁ map f S₂
                    theorem Subalgebra.map_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {f : A →ₐ[R] B} (hf : Function.Injective f) :
                    @[simp]
                    theorem Subalgebra.map_id {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                    map (AlgHom.id R A) S = S
                    theorem Subalgebra.map_map {R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] (S : Subalgebra R A) (g : B →ₐ[R] C) (f : A →ₐ[R] B) :
                    map g (map f S) = map (g.comp f) S
                    @[simp]
                    theorem Subalgebra.mem_map {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S : Subalgebra R A} {f : A →ₐ[R] B} {y : B} :
                    y map f S xS, f x = y
                    theorem Subalgebra.map_toSubmodule {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S : Subalgebra R A} {f : A →ₐ[R] B} :
                    def Subalgebra.comap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) :

                    Preimage of a subalgebra under an algebra homomorphism.

                    Equations
                    Instances For
                      @[simp]
                      theorem Subalgebra.comap_toSubsemiring {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) :
                      @[simp]
                      theorem Subalgebra.coe_comap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) :
                      (comap f S) = f ⁻¹' S
                      theorem Subalgebra.map_le {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S : Subalgebra R A} {f : A →ₐ[R] B} {U : Subalgebra R B} :
                      map f S U S comap f U
                      theorem Subalgebra.gc_map_comap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) :
                      @[simp]
                      theorem Subalgebra.mem_comap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R B) (f : A →ₐ[R] B) (x : A) :
                      x comap f S f x S
                      instance Subalgebra.noZeroDivisors {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [NoZeroDivisors A] [Algebra R A] (S : Subalgebra R A) :
                      instance Subalgebra.isDomain {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [IsDomain A] [Algebra R A] (S : Subalgebra R A) :
                      @[instance 75]
                      instance SubalgebraClass.toAlgebra {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A] [SubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :
                      Algebra R s
                      Equations
                      • One or more equations did not get rendered due to their size.
                      @[simp]
                      theorem SubalgebraClass.coe_algebraMap {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A] [SubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) (r : R) :
                      ((algebraMap R s) r) = (algebraMap R A) r
                      def SubalgebraClass.val {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A] [SubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :
                      s →ₐ[R] A

                      Embedding of a subalgebra into the algebra, as an algebra homomorphism.

                      Equations
                      Instances For
                        @[simp]
                        theorem SubalgebraClass.coe_val {S : Type u_1} {R : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [SetLike S A] [SubsemiringClass S A] [hSR : SMulMemClass S R A] (s : S) :
                        def Submodule.toSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (p : Submodule R A) (h_one : 1 p) (h_mul : ∀ (x y : A), x py px * y p) :

                        A submodule containing 1 and closed under multiplication is a subalgebra.

                        Equations
                        • p.toSubalgebra h_one h_mul = { carrier := p.carrier, mul_mem' := , one_mem' := h_one, add_mem' := , zero_mem' := , algebraMap_mem' := }
                        Instances For
                          @[simp]
                          theorem Submodule.toSubalgebra_toSubsemiring {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (p : Submodule R A) (h_one : 1 p) (h_mul : ∀ (x y : A), x py px * y p) :
                          (p.toSubalgebra h_one h_mul).toSubsemiring = { carrier := p.carrier, mul_mem' := , one_mem' := h_one, add_mem' := , zero_mem' := }
                          @[simp]
                          theorem Submodule.coe_toSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (p : Submodule R A) (h_one : 1 p) (h_mul : ∀ (x y : A), x py px * y p) :
                          (p.toSubalgebra h_one h_mul) = p.carrier
                          @[simp]
                          theorem Submodule.mem_toSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] {p : Submodule R A} {h_one : 1 p} {h_mul : ∀ (x y : A), x py px * y p} {x : A} :
                          x p.toSubalgebra h_one h_mul x p
                          theorem Submodule.toSubalgebra_mk {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (s : Submodule R A) (h1 : 1 s) (hmul : ∀ (x y : A), x sy sx * y s) :
                          s.toSubalgebra h1 hmul = { carrier := s, mul_mem' := hmul, one_mem' := h1, add_mem' := , zero_mem' := , algebraMap_mem' := }
                          @[simp]
                          theorem Submodule.toSubalgebra_toSubmodule {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (p : Submodule R A) (h_one : 1 p) (h_mul : ∀ (x y : A), x py px * y p) :
                          @[simp]
                          theorem Subalgebra.toSubmodule_toSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                          (toSubmodule S).toSubalgebra = S
                          def AlgHom.range {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) :

                          Range of an AlgHom as a subalgebra.

                          Equations
                          • φ.range = { toSubsemiring := φ.rangeS, algebraMap_mem' := }
                          Instances For
                            @[simp]
                            theorem AlgHom.range_toSubsemiring {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) :
                            @[simp]
                            theorem AlgHom.coe_range {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) :
                            φ.range = Set.range φ
                            @[simp]
                            theorem AlgHom.mem_range {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) {y : B} :
                            y φ.range ∃ (x : A), φ x = y
                            theorem AlgHom.mem_range_self {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (φ : A →ₐ[R] B) (x : A) :
                            φ x φ.range
                            theorem AlgHom.range_comp {R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
                            theorem AlgHom.range_comp_le_range {R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
                            def AlgHom.codRestrict {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ (x : A), f x S) :
                            A →ₐ[R] S

                            Restrict the codomain of an algebra homomorphism.

                            Equations
                            Instances For
                              @[simp]
                              theorem AlgHom.val_comp_codRestrict {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ (x : A), f x S) :
                              S.val.comp (f.codRestrict S hf) = f
                              @[simp]
                              theorem AlgHom.coe_codRestrict {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ (x : A), f x S) (x : A) :
                              ((f.codRestrict S hf) x) = f x
                              theorem AlgHom.injective_codRestrict {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ (x : A), f x S) :
                              @[reducible, inline]
                              abbrev AlgHom.rangeRestrict {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) :
                              A →ₐ[R] f.range

                              Restrict the codomain of an AlgHom f to f.range.

                              This is the bundled version of Set.rangeFactorization.

                              Equations
                              Instances For
                                instance AlgHom.fintypeRange {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [Fintype A] [DecidableEq B] (φ : A →ₐ[R] B) :

                                The range of a morphism of algebras is a fintype, if the domain is a fintype.

                                Note that this instance can cause a diamond with Subtype.fintype if B is also a fintype.

                                Equations
                                def AlgEquiv.ofLeftInverse {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {g : BA} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) :
                                A ≃ₐ[R] f.range

                                Restrict an algebra homomorphism with a left inverse to an algebra isomorphism to its range.

                                This is a computable alternative to AlgEquiv.ofInjective.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem AlgEquiv.ofLeftInverse_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {g : BA} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) (x : A) :
                                  ((ofLeftInverse h) x) = f x
                                  @[simp]
                                  theorem AlgEquiv.ofLeftInverse_symm_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {g : BA} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) (x : f.range) :
                                  (ofLeftInverse h).symm x = g x
                                  noncomputable def AlgEquiv.ofInjective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Injective f) :
                                  A ≃ₐ[R] f.range

                                  Restrict an injective algebra homomorphism to an algebra isomorphism

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem AlgEquiv.ofInjective_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Injective f) (x : A) :
                                    ((ofInjective f hf) x) = f x
                                    noncomputable def AlgEquiv.ofInjectiveField {R : Type u} [CommSemiring R] {E : Type u_1} {F : Type u_2} [DivisionRing E] [Semiring F] [Nontrivial F] [Algebra R E] [Algebra R F] (f : E →ₐ[R] F) :
                                    E ≃ₐ[R] f.range

                                    Restrict an algebra homomorphism between fields to an algebra isomorphism

                                    Equations
                                    Instances For
                                      def AlgEquiv.subalgebraMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (e : A ≃ₐ[R] B) (S : Subalgebra R A) :
                                      S ≃ₐ[R] (Subalgebra.map (↑e) S)

                                      Given an equivalence e : A ≃ₐ[R] B of R-algebras and a subalgebra S of A, subalgebraMap is the induced equivalence between S and S.map e

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem AlgEquiv.subalgebraMap_symm_apply_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (e : A ≃ₐ[R] B) (S : Subalgebra R A) (y : ↑(e.toRingEquiv.toAddEquiv '' S.toAddSubmonoid)) :
                                        ((e.subalgebraMap S).symm y) = (↑e).symm y
                                        @[simp]
                                        theorem AlgEquiv.subalgebraMap_apply_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (e : A ≃ₐ[R] B) (S : Subalgebra R A) (x : S.toAddSubmonoid) :
                                        ((e.subalgebraMap S) x) = e x
                                        theorem Subalgebra.range_val {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                                        S.val.range = S
                                        def Subalgebra.inclusion {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : S T) :
                                        S →ₐ[R] T

                                        The map S → T when S is a subalgebra contained in the subalgebra T.

                                        This is the subalgebra version of Submodule.inclusion, or Subring.inclusion

                                        Equations
                                        Instances For
                                          theorem Subalgebra.inclusion_injective {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : S T) :
                                          @[simp]
                                          theorem Subalgebra.inclusion_self {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S : Subalgebra R A} :
                                          inclusion = AlgHom.id R S
                                          @[simp]
                                          theorem Subalgebra.inclusion_mk {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : S T) (x : A) (hx : x S) :
                                          (inclusion h) x, hx = x,
                                          theorem Subalgebra.inclusion_right {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : S T) (x : T) (m : x S) :
                                          (inclusion h) x, m = x
                                          @[simp]
                                          theorem Subalgebra.inclusion_inclusion {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T U : Subalgebra R A} (hst : S T) (htu : T U) (x : S) :
                                          (inclusion htu) ((inclusion hst) x) = (inclusion ) x
                                          @[simp]
                                          theorem Subalgebra.coe_inclusion {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {S T : Subalgebra R A} (h : S T) (s : S) :
                                          ((inclusion h) s) = s
                                          def Subalgebra.equivOfEq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S T : Subalgebra R A) (h : S = T) :
                                          S ≃ₐ[R] T

                                          Two subalgebras that are equal are also equivalent as algebras.

                                          This is the Subalgebra version of LinearEquiv.ofEq and Equiv.setCongr.

                                          Equations
                                          • S.equivOfEq T h = { toFun := fun (x : S) => x, , invFun := fun (x : T) => x, , left_inv := , right_inv := , map_mul' := , map_add' := , commutes' := }
                                          Instances For
                                            @[simp]
                                            theorem Subalgebra.equivOfEq_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S T : Subalgebra R A) (h : S = T) (x : S) :
                                            (S.equivOfEq T h) x = x,
                                            @[simp]
                                            theorem Subalgebra.equivOfEq_symm {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S T : Subalgebra R A) (h : S = T) :
                                            (S.equivOfEq T h).symm = T.equivOfEq S
                                            @[simp]
                                            theorem Subalgebra.equivOfEq_rfl {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S : Subalgebra R A) :
                                            @[simp]
                                            theorem Subalgebra.equivOfEq_trans {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (S T U : Subalgebra R A) (hST : S = T) (hTU : T = U) :
                                            (S.equivOfEq T hST).trans (T.equivOfEq U hTU) = S.equivOfEq U
                                            theorem Subalgebra.range_comp_val {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R A) (f : A →ₐ[R] B) :
                                            (f.comp S.val).range = map f S
                                            def AlgHom.subalgebraMap {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R A) (f : A →ₐ[R] B) :
                                            S →ₐ[R] (Subalgebra.map f S)

                                            An AlgHom between two rings restricts to an AlgHom from any subalgebra of the domain onto the image of that subalgebra.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem AlgHom.subalgebraMap_coe_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S : Subalgebra R A} (f : A →ₐ[R] B) (x : S) :
                                              ((subalgebraMap S f) x) = f x
                                              theorem AlgHom.subalgebraMap_surjective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R A) (f : A →ₐ[R] B) :
                                              noncomputable def Subalgebra.equivMapOfInjective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R A) (f : A →ₐ[R] B) (hf : Function.Injective f) :
                                              S ≃ₐ[R] (map f S)

                                              A subalgebra is isomorphic to its image under an injective AlgHom

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem Subalgebra.coe_equivMapOfInjective_apply {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (S : Subalgebra R A) (f : A →ₐ[R] B) (hf : Function.Injective f) (x : S) :
                                                ((S.equivMapOfInjective f hf) x) = f x

                                                Actions by Subalgebras #

                                                These are just copies of the definitions about Subsemiring starting from Subring.mulAction.

                                                instance Subalgebra.instSMulSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [SMul A α] (S : Subalgebra R A) :
                                                SMul (↥S) α

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                theorem Subalgebra.smul_def {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [SMul A α] {S : Subalgebra R A} (g : S) (m : α) :
                                                g m = g m
                                                instance Subalgebra.smulCommClass_left {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} {β : Type u_2} [SMul A β] [SMul α β] [SMulCommClass A α β] (S : Subalgebra R A) :
                                                SMulCommClass (↥S) α β
                                                instance Subalgebra.smulCommClass_right {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} {β : Type u_2} [SMul α β] [SMul A β] [SMulCommClass α A β] (S : Subalgebra R A) :
                                                SMulCommClass α (↥S) β
                                                instance Subalgebra.isScalarTower_left {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} {β : Type u_2} [SMul α β] [SMul A α] [SMul A β] [IsScalarTower A α β] (S : Subalgebra R A) :
                                                IsScalarTower (↥S) α β

                                                Note that this provides IsScalarTower S R R which is needed by smul_mul_assoc.

                                                instance Subalgebra.isScalarTower_mid {R : Type u_3} {S : Type u_4} {T : Type u_5} [CommSemiring R] [Semiring S] [AddCommMonoid T] [Algebra R S] [Module R T] [Module S T] [IsScalarTower R S T] (S' : Subalgebra R S) :
                                                IsScalarTower R (↥S') T
                                                instance Subalgebra.instFaithfulSMulSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [SMul A α] [FaithfulSMul A α] (S : Subalgebra R A) :
                                                FaithfulSMul (↥S) α
                                                instance Subalgebra.instMulActionSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [MulAction A α] (S : Subalgebra R A) :
                                                MulAction (↥S) α

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                instance Subalgebra.instDistribMulActionSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [AddMonoid α] [DistribMulAction A α] (S : Subalgebra R A) :

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                instance Subalgebra.instSMulWithZeroSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [Zero α] [SMulWithZero A α] (S : Subalgebra R A) :
                                                SMulWithZero (↥S) α

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                instance Subalgebra.instMulActionWithZeroSubtypeMem {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [Zero α] [MulActionWithZero A α] (S : Subalgebra R A) :

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                instance Subalgebra.moduleLeft {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {α : Type u_1} [AddCommMonoid α] [Module A α] (S : Subalgebra R A) :
                                                Module (↥S) α

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                instance Subalgebra.toAlgebra {α : Type u_1} {R : Type u_3} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring α] [Algebra R A] [Algebra A α] (S : Subalgebra R A) :
                                                Algebra (↥S) α

                                                The action by a subalgebra is the action by the underlying algebra.

                                                Equations
                                                theorem Subalgebra.algebraMap_eq {α : Type u_1} {R : Type u_3} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring α] [Algebra R A] [Algebra A α] (S : Subalgebra R A) :
                                                algebraMap (↥S) α = (algebraMap A α).comp S.val
                                                @[simp]
                                                theorem Subalgebra.rangeS_algebraMap {R : Type u_3} {A : Type u_4} [CommSemiring R] [CommSemiring A] [Algebra R A] (S : Subalgebra R A) :
                                                @[simp]
                                                theorem Subalgebra.range_algebraMap {R : Type u_3} {A : Type u_4} [CommRing R] [CommRing A] [Algebra R A] (S : Subalgebra R A) :
                                                theorem Set.algebraMap_mem_center {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (r : R) :
                                                def Subalgebra.center (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] :

                                                The center of an algebra is the set of elements which commute with every element. They form a subalgebra.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  @[simp]
                                                  theorem Subalgebra.center_toSubring (R : Type u_1) (A : Type u_2) [CommRing R] [Ring A] [Algebra R A] :
                                                  theorem Subalgebra.mem_center_iff {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {a : A} :
                                                  a center R A ∀ (b : A), b * a = a * b
                                                  @[simp]
                                                  theorem Set.algebraMap_mem_centralizer {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {s : Set A} (r : R) :
                                                  def Subalgebra.centralizer (R : Type u) {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (s : Set A) :

                                                  The centralizer of a set as a subalgebra.

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem Subalgebra.coe_centralizer (R : Type u) {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (s : Set A) :
                                                    theorem Subalgebra.mem_centralizer_iff (R : Type u) {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] {s : Set A} {z : A} :
                                                    z centralizer R s gs, g * z = z * g
                                                    theorem Subalgebra.center_le_centralizer (R : Type u) {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (s : Set A) :
                                                    theorem Subalgebra.centralizer_le (R : Type u) {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (s t : Set A) (h : s t) :

                                                    A subsemiring is an -subalgebra.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      def subalgebraOfSubring {R : Type u_1} [Ring R] (S : Subring R) :

                                                      A subring is a -subalgebra.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem mem_subalgebraOfSubring {R : Type u_1} [Ring R] {x : R} {S : Subring R} :
                                                        def AlgHom.equalizer {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} (ϕ ψ : F) [FunLike F A B] [AlgHomClass F R A B] :

                                                        The equalizer of two R-algebra homomorphisms

                                                        Equations
                                                        • AlgHom.equalizer ϕ ψ = { carrier := {a : A | ϕ a = ψ a}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := }
                                                        Instances For
                                                          @[simp]
                                                          theorem AlgHom.equalizer_toSubsemiring {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} (ϕ ψ : F) [FunLike F A B] [AlgHomClass F R A B] :
                                                          (equalizer ϕ ψ).toSubsemiring = { carrier := {a : A | ϕ a = ψ a}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
                                                          @[simp]
                                                          theorem AlgHom.coe_equalizer {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} (ϕ ψ : F) [FunLike F A B] [AlgHomClass F R A B] :
                                                          (equalizer ϕ ψ) = {a : A | ϕ a = ψ a}
                                                          @[simp]
                                                          theorem AlgHom.mem_equalizer {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} [FunLike F A B] [AlgHomClass F R A B] (φ ψ : F) (x : A) :
                                                          x equalizer φ ψ φ x = ψ x
                                                          theorem AlgHom.equalizer_toSubmodule {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} [FunLike F A B] [AlgHomClass F R A B] {φ ψ : F} :
                                                          theorem AlgHom.le_equalizer {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {F : Type u_4} [FunLike F A B] [AlgHomClass F R A B] {φ ψ : F} {S : Subalgebra R A} :
                                                          S equalizer φ ψ Set.EqOn φ ψ S
                                                          theorem Subalgebra.comap_map_eq_self_of_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {f : A →ₐ[R] B} (hf : Function.Injective f) (S : Subalgebra R A) :
                                                          comap f (map f S) = S
                                                          def NonUnitalSubalgebra.toSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] (S : NonUnitalSubalgebra R A) (h1 : 1 S) :

                                                          Turn a non-unital subalgebra containing 1 into a subalgebra.

                                                          Equations
                                                          • S.toSubalgebra h1 = { carrier := S.carrier, mul_mem' := , one_mem' := h1, add_mem' := , zero_mem' := , algebraMap_mem' := }
                                                          Instances For