@[inline]
Interpret a function with two arguments as a function on α × β
Equations
- Function.uncurry f a = f a.fst a.snd
Instances For
@[simp]
theorem
Function.curry_uncurry
{α : Type u_1}
{β : Type u_2}
{φ : Sort u_3}
(f : α → β → φ)
:
Function.curry (Function.uncurry f) = f
@[simp]
theorem
Function.uncurry_curry
{α : Type u_1}
{β : Type u_2}
{φ : Sort u_3}
(f : α × β → φ)
:
Function.uncurry (Function.curry f) = f
@[simp]
theorem
Function.uncurry_apply_pair
{α : Type u_1}
{β : Type u_2}
{γ : Sort u_3}
(f : α → β → γ)
(x : α)
(y : β)
:
Function.uncurry f (x, y) = f x y
@[simp]
theorem
Function.curry_apply
{α : Type u_1}
{β : Type u_2}
{γ : Sort u_3}
(f : α × β → γ)
(x : α)
(y : β)
:
Function.curry f x y = f (x, y)