Documentation

Mathlib.FieldTheory.IntermediateField.Basic

Intermediate fields #

Let L / K be a field extension, given as an instance Algebra K L. This file defines the type of fields in between K and L, IntermediateField K L. An IntermediateField K L is a subfield of L which contains (the image of) K, i.e. it is a Subfield L and a Subalgebra K L.

Main definitions #

Implementation notes #

Intermediate fields are defined with a structure extending Subfield and Subalgebra. A Subalgebra is closed under all operations except ⁻¹,

Tags #

intermediate field, field extension

structure IntermediateField (K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] extends Subalgebra , Subsemiring , Submonoid , AddSubmonoid , Subsemigroup , AddSubsemigroup :
Type u_2

S : IntermediateField K L is a subset of L such that there is a field tower L / S / K.

    Instances For
      theorem IntermediateField.inv_mem' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (self : IntermediateField K L) (x : L) :
      x self.carrierx⁻¹ self.carrier
      instance IntermediateField.instSetLike {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] :
      Equations
      • IntermediateField.instSetLike = { coe := fun (S : IntermediateField K L) => S.carrier, coe_injective' := }
      theorem IntermediateField.neg_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) :
      -x S
      def IntermediateField.toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :

      Reinterpret an IntermediateField as a Subfield.

      Equations
      • S.toSubfield = { toSubsemiring := S.toSubsemiring, neg_mem' := , inv_mem' := }
      Instances For
        Equations
        • =
        theorem IntermediateField.mem_carrier {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {s : IntermediateField K L} {x : L} :
        x s.carrier x s
        theorem IntermediateField.ext {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {T : IntermediateField K L} (h : ∀ (x : L), x S x T) :
        S = T

        Two intermediate fields are equal if they have the same elements.

        @[simp]
        theorem IntermediateField.coe_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
        S.toSubalgebra = S
        @[simp]
        theorem IntermediateField.coe_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
        S.toSubfield = S
        @[simp]
        theorem IntermediateField.mem_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : Subsemiring L) (hK : ∀ (x : K), (algebraMap K L) x s) (hi : x{ toSubsemiring := s, algebraMap_mem' := hK }.carrier, x⁻¹ { toSubsemiring := s, algebraMap_mem' := hK }.carrier) (x : L) :
        x { toSubsemiring := s, algebraMap_mem' := hK, inv_mem' := hi } x s
        @[simp]
        theorem IntermediateField.mem_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
        x s.toSubalgebra x s
        @[simp]
        theorem IntermediateField.mem_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (s : IntermediateField K L) (x : L) :
        x s.toSubfield x s
        def IntermediateField.copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :

        Copy of an intermediate field with a new carrier equal to the old one. Useful to fix definitional equalities.

        Equations
        • S.copy s hs = { toSubalgebra := S.copy s hs, inv_mem' := }
        Instances For
          @[simp]
          theorem IntermediateField.coe_copy {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :
          (S.copy s hs) = s
          theorem IntermediateField.copy_eq {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (s : Set L) (hs : s = S) :
          S.copy s hs = S

          Lemmas inherited from more general structures #

          The declarations in this section derive from the fact that an IntermediateField is also a subalgebra or subfield. Their use should be replaceable with the corresponding lemma from a subobject class.

          theorem IntermediateField.algebraMap_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :
          (algebraMap K L) x S

          An intermediate field contains the image of the smaller field.

          theorem IntermediateField.smul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {y : L} :
          y S∀ {x : K}, x y S

          An intermediate field is closed under scalar multiplication.

          theorem IntermediateField.one_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          1 S

          An intermediate field contains the ring's 1.

          theorem IntermediateField.zero_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          0 S

          An intermediate field contains the ring's 0.

          theorem IntermediateField.mul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} {y : L} :
          x Sy Sx * y S

          An intermediate field is closed under multiplication.

          theorem IntermediateField.add_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} {y : L} :
          x Sy Sx + y S

          An intermediate field is closed under addition.

          theorem IntermediateField.sub_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} {y : L} :
          x Sy Sx - y S

          An intermediate field is closed under subtraction

          theorem IntermediateField.inv_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} :
          x Sx⁻¹ S

          An intermediate field is closed under inverses.

          theorem IntermediateField.div_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} {y : L} :
          x Sy Sx / y S

          An intermediate field is closed under division.

          theorem IntermediateField.list_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
          (∀ xl, x S)l.prod S

          Product of a list of elements in an intermediate_field is in the intermediate_field.

          theorem IntermediateField.list_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {l : List L} :
          (∀ xl, x S)l.sum S

          Sum of a list of elements in an intermediate field is in the intermediate_field.

          theorem IntermediateField.multiset_prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
          (∀ am, a S)m.prod S

          Product of a multiset of elements in an intermediate field is in the intermediate_field.

          theorem IntermediateField.multiset_sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (m : Multiset L) :
          (∀ am, a S)m.sum S

          Sum of a multiset of elements in an IntermediateField is in the IntermediateField.

          theorem IntermediateField.prod_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} {t : Finset ι} {f : ιL} (h : ct, f c S) :
          it, f i S

          Product of elements of an intermediate field indexed by a Finset is in the intermediate_field.

          theorem IntermediateField.sum_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} {t : Finset ι} {f : ιL} (h : ct, f c S) :
          it, f i S

          Sum of elements in an IntermediateField indexed by a Finset is in the IntermediateField.

          theorem IntermediateField.pow_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) (n : ) :
          x ^ n S
          theorem IntermediateField.zsmul_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) (n : ) :
          n x S
          theorem IntermediateField.intCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : ) :
          n S
          theorem IntermediateField.coe_add {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) (y : S) :
          (x + y) = x + y
          theorem IntermediateField.coe_neg {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
          (-x) = -x
          theorem IntermediateField.coe_mul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) (y : S) :
          (x * y) = x * y
          theorem IntermediateField.coe_inv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
          x⁻¹ = (↑x)⁻¹
          theorem IntermediateField.coe_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          0 = 0
          theorem IntermediateField.coe_one {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
          1 = 1
          theorem IntermediateField.coe_pow {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) (n : ) :
          (x ^ n) = x ^ n
          theorem IntermediateField.natCast_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : ) :
          n S
          @[deprecated natCast_mem]
          theorem IntermediateField.coe_nat_mem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (n : ) :
          n S

          Alias of IntermediateField.natCast_mem.

          @[deprecated intCast_mem]
          theorem IntermediateField.coe_int_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
          n s

          Alias of intCast_mem.

          def Subalgebra.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : xS, x⁻¹ S) :

          Turn a subalgebra closed under inverses into an intermediate field

          Equations
          • S.toIntermediateField inv_mem = { toSubalgebra := S, inv_mem' := inv_mem }
          Instances For
            @[simp]
            theorem toSubalgebra_toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (inv_mem : xS, x⁻¹ S) :
            (S.toIntermediateField inv_mem).toSubalgebra = S
            @[simp]
            theorem toIntermediateField_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
            S.toIntermediateField = S
            def Subalgebra.toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField S) :

            Turn a subalgebra satisfying IsField into an intermediate_field

            Equations
            • S.toIntermediateField' hS = S.toIntermediateField
            Instances For
              @[simp]
              theorem toSubalgebra_toIntermediateField' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subalgebra K L) (hS : IsField S) :
              (S.toIntermediateField' hS).toSubalgebra = S
              @[simp]
              theorem toIntermediateField'_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
              S.toIntermediateField' = S
              def Subfield.toIntermediateField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : Subfield L) (algebra_map_mem : ∀ (x : K), (algebraMap K L) x S) :

              Turn a subfield of L containing the image of K into an intermediate field

              Equations
              • S.toIntermediateField algebra_map_mem = { toSubsemiring := S.toSubsemiring, algebraMap_mem' := algebra_map_mem, inv_mem' := }
              Instances For
                instance IntermediateField.toField {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                Field S

                An intermediate field inherits a field structure

                Equations
                • S.toField = S.toSubfield.toField
                theorem IntermediateField.coe_sum {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} [Fintype ι] (f : ιS) :
                (∑ i : ι, f i) = i : ι, (f i)
                theorem IntermediateField.coe_prod {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {ι : Type u_4} [Fintype ι] (f : ιS) :
                (∏ i : ι, f i) = i : ι, (f i)

                IntermediateFields inherit structure from their Subfield coercions.

                instance IntermediateField.instSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] (F : IntermediateField K L) :
                SMul (↥F) X

                The action by an intermediate field is the action by the underlying field.

                Equations
                theorem IntermediateField.smul_def {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] {F : IntermediateField K L} (g : F) (m : X) :
                g m = g m
                instance IntermediateField.smulCommClass_left {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_5} {Y : Type u_4} [SMul L Y] [SMul X Y] [SMulCommClass L X Y] (F : IntermediateField K L) :
                SMulCommClass (↥F) X Y
                Equations
                • =
                instance IntermediateField.smulCommClass_right {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L Y] [SMulCommClass X L Y] (F : IntermediateField K L) :
                SMulCommClass X (↥F) Y
                Equations
                • =
                @[instance 900]
                instance IntermediateField.instIsScalarTowerSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} {Y : Type u_5} [SMul X Y] [SMul L X] [SMul L Y] [IsScalarTower L X Y] (F : IntermediateField K L) :
                IsScalarTower (↥F) X Y

                Note that this provides IsScalarTower F K K which is needed by smul_mul_assoc.

                Equations
                • =
                instance IntermediateField.instFaithfulSMulSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [SMul L X] [FaithfulSMul L X] (F : IntermediateField K L) :
                FaithfulSMul (↥F) X
                Equations
                • =
                instance IntermediateField.instMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [MulAction L X] (F : IntermediateField K L) :
                MulAction (↥F) X

                The action by an intermediate field is the action by the underlying field.

                Equations
                instance IntermediateField.instDistribMulActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddMonoid X] [DistribMulAction L X] (F : IntermediateField K L) :

                The action by an intermediate field is the action by the underlying field.

                Equations

                The action by an intermediate field is the action by the underlying field.

                Equations
                instance IntermediateField.instSMulWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [SMulWithZero L X] (F : IntermediateField K L) :
                SMulWithZero (↥F) X

                The action by an intermediate field is the action by the underlying field.

                Equations
                instance IntermediateField.instMulActionWithZeroSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Zero X] [MulActionWithZero L X] (F : IntermediateField K L) :

                The action by an intermediate field is the action by the underlying field.

                Equations
                instance IntermediateField.instModuleSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [AddCommMonoid X] [Module L X] (F : IntermediateField K L) :
                Module (↥F) X

                The action by an intermediate field is the action by the underlying field.

                Equations
                instance IntermediateField.instMulSemiringActionSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {X : Type u_4} [Semiring X] [MulSemiringAction L X] (F : IntermediateField K L) :

                The action by an intermediate field is the action by the underlying field.

                Equations

                IntermediateFields inherit structure from their Subalgebra coercions.

                instance IntermediateField.toAlgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                Algebra (↥S) L
                Equations
                instance IntermediateField.module' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                Module R S
                Equations
                instance IntermediateField.algebra' {R' : Type u_4} {K : Type u_5} {L : Type u_6} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) [CommSemiring R'] [SMul R' K] [Algebra R' L] [IsScalarTower R' K L] :
                Algebra R' S
                Equations
                instance IntermediateField.isScalarTower {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] :
                IsScalarTower R K S
                Equations
                • =
                @[simp]
                theorem IntermediateField.coe_smul {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [SMul R K] [Module R L] [IsScalarTower R K L] (r : R) (x : S) :
                (r x) = r x
                @[simp]
                theorem IntermediateField.algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : S) :
                (algebraMap (↥S) L) x = x
                @[simp]
                theorem IntermediateField.coe_algebraMap_apply {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) (x : K) :
                ((algebraMap K S) x) = (algebraMap K L) x
                instance IntermediateField.instSMulSubtypeMemOfAlgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] :
                SMul (↥S) R
                Equations
                • S.instSMulSubtypeMemOfAlgebra = S.instSMulSubtypeMem
                instance IntermediateField.isScalarTower_bot {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] :
                IsScalarTower (↥S) L R
                Equations
                • =
                instance IntermediateField.isScalarTower_mid {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [Semiring R] [Algebra L R] [Algebra K R] [IsScalarTower K L R] :
                IsScalarTower K (↥S) R
                Equations
                • =
                instance IntermediateField.isScalarTower_mid' {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                IsScalarTower K (↥S) L

                Specialize is_scalar_tower_mid to the common case where the top field is L

                Equations
                • =
                instance IntermediateField.instAlgebraSubtypeMem {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {E : Type u_4} [Semiring E] [Algebra L E] :
                Algebra (↥S) E
                Equations
                instance IntermediateField.instAlgebraSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                Algebra S T
                Equations
                instance IntermediateField.instModuleSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                Module S T
                Equations
                instance IntermediateField.instSMulSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) :
                SMul S T
                Equations
                instance IntermediateField.instIsScalarTowerSubtypeMem_1 {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {E : Type u_4} [Field E] [Algebra L E] (T : IntermediateField (↥S) E) [Algebra K E] [IsScalarTower K L E] :
                IsScalarTower K S T
                Equations
                • =
                def IntermediateField.comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') (S : IntermediateField K L') :

                Given f : L →ₐ[K] L', S.comap f is the intermediate field between K and L such that f x ∈ S ↔ x ∈ S.comap f.

                Equations
                Instances For
                  def IntermediateField.map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') (S : IntermediateField K L) :

                  Given f : L →ₐ[K] L', S.map f is the intermediate field between K and L' such that x ∈ S ↔ f x ∈ S.map f.

                  Equations
                  Instances For
                    @[simp]
                    theorem IntermediateField.coe_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                    (IntermediateField.map f S) = f '' S
                    @[simp]
                    theorem IntermediateField.toSubalgebra_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                    (IntermediateField.map f S).toSubalgebra = Subalgebra.map f S.toSubalgebra
                    @[simp]
                    theorem IntermediateField.toSubfield_map {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L →ₐ[K] L') :
                    (IntermediateField.map f S).toSubfield = Subfield.map (↑f) S.toSubfield
                    theorem IntermediateField.map_map {K : Type u_4} {L₁ : Type u_5} {L₂ : Type u_6} {L₃ : Type u_7} [Field K] [Field L₁] [Algebra K L₁] [Field L₂] [Algebra K L₂] [Field L₃] [Algebra K L₃] (E : IntermediateField K L₁) (f : L₁ →ₐ[K] L₂) (g : L₂ →ₐ[K] L₃) :
                    theorem IntermediateField.map_mono {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') {S : IntermediateField K L} {T : IntermediateField K L} (h : S T) :
                    theorem IntermediateField.map_le_iff_le_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L →ₐ[K] L'} {s : IntermediateField K L} {t : IntermediateField K L'} :
                    theorem IntermediateField.gc_map_comap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                    def IntermediateField.intermediateFieldMap {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) :
                    E ≃ₐ[K] (IntermediateField.map (↑e) E)

                    Given an equivalence e : L ≃ₐ[K] L' of K-field extensions and an intermediate field E of L/K, intermediateFieldMap e E is the induced equivalence between E and E.map e

                    Equations
                    Instances For
                      @[simp]
                      theorem IntermediateField.intermediateFieldMap_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) (a : E) :
                      @[simp]
                      theorem IntermediateField.intermediateFieldMap_symm_apply_coe {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L ≃ₐ[K] L') (E : IntermediateField K L) (a : (IntermediateField.map (↑e) E)) :
                      ((IntermediateField.intermediateFieldMap e E).symm a) = e.symm a
                      def AlgHom.fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :

                      The range of an algebra homomorphism, as an intermediate field.

                      Equations
                      • f.fieldRange = { toSubalgebra := f.range, inv_mem' := }
                      Instances For
                        @[simp]
                        theorem AlgHom.fieldRange_toSubalgebra {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                        f.fieldRange.toSubalgebra = f.range
                        @[simp]
                        theorem AlgHom.coe_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                        f.fieldRange = Set.range f
                        @[simp]
                        theorem AlgHom.fieldRange_toSubfield {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                        f.fieldRange.toSubfield = (↑f).fieldRange
                        @[simp]
                        theorem AlgHom.mem_fieldRange {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L →ₐ[K] L'} {y : L'} :
                        y f.fieldRange ∃ (x : L), f x = y
                        def IntermediateField.val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                        S →ₐ[K] L

                        The embedding from an intermediate field of L / K to L.

                        Equations
                        • S.val = S.val
                        Instances For
                          @[simp]
                          theorem IntermediateField.coe_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          S.val = Subtype.val
                          @[simp]
                          theorem IntermediateField.val_mk {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {x : L} (hx : x S) :
                          S.val x, hx = x
                          theorem IntermediateField.range_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          S.val.range = S.toSubalgebra
                          @[simp]
                          theorem IntermediateField.fieldRange_val {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          S.val.fieldRange = S
                          instance IntermediateField.AlgHom.inhabited {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                          Equations
                          theorem IntermediateField.aeval_coe {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) {R : Type u_4} [CommRing R] [Algebra R K] [Algebra R L] [IsScalarTower R K L] (x : S) (P : Polynomial R) :
                          (Polynomial.aeval x) P = ((Polynomial.aeval x) P)
                          def IntermediateField.inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} {F : IntermediateField K L} (hEF : E F) :
                          E →ₐ[K] F

                          The map E → F when E is an intermediate field contained in the intermediate field F.

                          This is the intermediate field version of Subalgebra.inclusion.

                          Equations
                          Instances For
                            @[simp]
                            @[simp]
                            theorem IntermediateField.inclusion_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} {F : IntermediateField K L} {G : IntermediateField K L} (hEF : E F) (hFG : F G) (x : E) :
                            @[simp]
                            theorem IntermediateField.coe_inclusion {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} {F : IntermediateField K L} (hEF : E F) (e : E) :
                            ((IntermediateField.inclusion hEF) e) = e
                            theorem IntermediateField.toSubalgebra_injective {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] :
                            Function.Injective IntermediateField.toSubalgebra
                            theorem IntermediateField.toSubfield_injective {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] :
                            Function.Injective IntermediateField.toSubfield
                            theorem IntermediateField.map_injective {K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L →ₐ[K] L') :
                            theorem IntermediateField.set_range_subset {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                            Set.range (algebraMap K L) S
                            theorem IntermediateField.fieldRange_le {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) :
                            (algebraMap K L).fieldRange S.toSubfield
                            @[simp]
                            theorem IntermediateField.toSubalgebra_le_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {S' : IntermediateField K L} :
                            S.toSubalgebra S'.toSubalgebra S S'
                            @[simp]
                            theorem IntermediateField.toSubalgebra_lt_toSubalgebra {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {S : IntermediateField K L} {S' : IntermediateField K L} :
                            S.toSubalgebra < S'.toSubalgebra S < S'
                            def IntermediateField.lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K F) :

                            Lift an intermediate_field of an intermediate_field

                            Equations
                            Instances For
                              instance IntermediateField.hasLift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} :
                              Equations
                              • IntermediateField.hasLift = { coe := IntermediateField.lift }
                              theorem IntermediateField.lift_injective {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) :
                              Function.Injective IntermediateField.lift
                              theorem IntermediateField.lift_le {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K F) :
                              theorem IntermediateField.mem_lift {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K F} (x : F) :
                              def IntermediateField.restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] (E : IntermediateField L' L) :

                              Given a tower L / ↥E / L' / K of field extensions, where E is an L'-intermediate field of L, reinterpret E as a K-intermediate field of L.

                              Equations
                              • IntermediateField.restrictScalars K E = { carrier := E.carrier, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := , inv_mem' := }
                              Instances For
                                @[simp]
                                theorem IntermediateField.coe_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                @[simp]
                                theorem IntermediateField.restrictScalars_toSubalgebra (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                @[simp]
                                theorem IntermediateField.restrictScalars_toSubfield (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} :
                                (IntermediateField.restrictScalars K E).toSubfield = E.toSubfield
                                @[simp]
                                theorem IntermediateField.mem_restrictScalars (K : Type u_1) {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] [Algebra L' L] [IsScalarTower K L' L] {E : IntermediateField L' L} {x : L} :
                                def Subfield.extendScalars {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) :

                                If F ≤ E are two subfields of L, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.toSubfield.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem Subfield.coe_extendScalars {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) :
                                  @[simp]
                                  theorem Subfield.extendScalars_toSubfield {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) :
                                  (Subfield.extendScalars h).toSubfield = E
                                  @[simp]
                                  theorem Subfield.mem_extendScalars {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) {x : L} :
                                  theorem Subfield.extendScalars_le_iff {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) (E' : IntermediateField (↥F) L) :
                                  Subfield.extendScalars h E' E E'.toSubfield
                                  theorem Subfield.le_extendScalars_iff {L : Type u_2} [Field L] {F : Subfield L} {E : Subfield L} (h : F E) (E' : IntermediateField (↥F) L) :
                                  E' Subfield.extendScalars h E'.toSubfield E
                                  def Subfield.extendScalars.orderIso {L : Type u_2} [Field L] (F : Subfield L) :
                                  { E : Subfield L // F E } ≃o IntermediateField (↥F) L

                                  Subfield.extendScalars.orderIso bundles Subfield.extendScalars into an order isomorphism from { E : Subfield L // F ≤ E } to IntermediateField F L. Its inverse is IntermediateField.toSubfield.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    theorem Subfield.extendScalars_injective {L : Type u_2} [Field L] (F : Subfield L) :
                                    Function.Injective fun (E : { E : Subfield L // F E }) => Subfield.extendScalars
                                    def IntermediateField.extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) :

                                    If F ≤ E are two intermediate fields of L / K, then E is also an intermediate field of L / F. It can be viewed as an inverse to IntermediateField.restrictScalars.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem IntermediateField.coe_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) :
                                      @[simp]
                                      theorem IntermediateField.extendScalars_toSubfield {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) :
                                      (IntermediateField.extendScalars h).toSubfield = E.toSubfield
                                      @[simp]
                                      theorem IntermediateField.mem_extendScalars {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) {x : L} :
                                      def IntermediateField.extendScalars.orderIso {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) :
                                      { E : IntermediateField K L // F E } ≃o IntermediateField (↥F) L

                                      IntermediateField.extendScalars.orderIso bundles IntermediateField.extendScalars into an order isomorphism from { E : IntermediateField K L // F ≤ E } to IntermediateField F L. Its inverse is IntermediateField.restrictScalars.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def IntermediateField.restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) :

                                        If F ≤ E are two intermediate fields of L / K, then F is also an intermediate field of E / K. It is an inverse of IntermediateField.lift, and can be viewed as a dual to IntermediateField.extendScalars.

                                        Equations
                                        Instances For
                                          theorem IntermediateField.mem_restrict {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) (x : E) :
                                          noncomputable def IntermediateField.restrict_algEquiv {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} {E : IntermediateField K L} (h : F E) :

                                          F is equivalent to F as an intermediate field of E / K.

                                          Equations
                                          Instances For