Group action on rings #
This file defines the typeclass of monoid acting on semirings MulSemiringAction M R
,
and the corresponding typeclass of invariant subrings.
Note that Algebra
does not satisfy the axioms of MulSemiringAction
.
Implementation notes #
There is no separate typeclass for group acting on rings, group acting on fields, etc.
They are all grouped under MulSemiringAction
.
Tags #
group action, invariant subring
class
MulSemiringAction
(M : Type u)
(R : Type v)
[Monoid M]
[Semiring R]
extends
DistribMulAction
,
MulAction
,
SMul
:
Type (max u v)
Typeclass for multiplicative actions by monoids on semirings.
This combines DistribMulAction
with MulDistribMulAction
.
Instances
theorem
MulSemiringAction.smul_one
{M : Type u}
{R : Type v}
:
∀ {inst : Monoid M} {inst_1 : Semiring R} [self : MulSemiringAction M R] (g : M), g • 1 = 1
Multipliying 1
by a scalar gives 1
@[instance 100]
instance
MulSemiringAction.toMulDistribMulAction
(M : Type u_3)
(R : Type u_4)
:
{x : Monoid M} → {x_1 : Semiring R} → [h : MulSemiringAction M R] → MulDistribMulAction M R
Equations
def
MulSemiringAction.toRingHom
(M : Type u_1)
[Monoid M]
(R : Type v)
[Semiring R]
[MulSemiringAction M R]
(x : M)
:
R →+* R
Each element of the monoid defines a semiring homomorphism.
Equations
- MulSemiringAction.toRingHom M R x = { toMonoidHom := MulDistribMulAction.toMonoidHom R x, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
MulSemiringAction.toRingHom_apply
(M : Type u_1)
[Monoid M]
(R : Type v)
[Semiring R]
[MulSemiringAction M R]
(x : M)
:
∀ (x_1 : R), (MulSemiringAction.toRingHom M R x) x_1 = x • x_1
theorem
toRingHom_injective
(M : Type u_1)
[Monoid M]
(R : Type v)
[Semiring R]
[MulSemiringAction M R]
[FaithfulSMul M R]
:
RingHom.applyMulSemiringAction
is faithful.
Equations
- ⋯ = ⋯
@[reducible, inline]
abbrev
MulSemiringAction.compHom
{M : Type u_1}
{N : Type u_2}
[Monoid M]
[Monoid N]
(R : Type v)
[Semiring R]
(f : N →* M)
[MulSemiringAction M R]
:
Compose a MulSemiringAction
with a MonoidHom
, with action f r' • m
.
See note [reducible non-instances].