Main definitions and results #
In a field extension K/k
FiniteGaloisIntermediateField
: The type of intermediate fields ofK/k
that are finite and Galois overk
adjoin
: The finite Galois intermediate field obtained from the normal closure of adjoining a finites : Set K
tok
.finGaloisGroup L
: The (finite) Galois groupGal(L/k)
associated to aL : FiniteGaloisIntermediateField k K
L
.finGaloisGroupMap
: ForFiniteGaloisIntermediateField
sL₁
andL₂
withL₂ ≤ L₁
giving the restriction ofGal(L₁/k)
toGal(L₂/k)
finGaloisGroupFunctor
: MappingFiniteGaloisIntermediateField
ordered by inverse inclusion to its corresponding Galois Group asFiniteGrp
.
TODO #
FiniteGaloisIntermediateField
should be aConditionallyCompleteLattice
but isn't proved yet.
The type of intermediate fields of K/k
that are finite and Galois over k
- carrier : Set K
- one_mem' : 1 ∈ self.carrier
- zero_mem' : 0 ∈ self.carrier
- algebraMap_mem' : ∀ (r : k), (algebraMap k K) r ∈ self.carrier
- finiteDimensional : FiniteDimensional k ↥self.toIntermediateField
- isGalois : IsGalois k ↥self.toIntermediateField
Instances For
Equations
- FiniteGaloisIntermediateField.instCoeIntermediateField k K = { coe := FiniteGaloisIntermediateField.toIntermediateField }
Equations
- FiniteGaloisIntermediateField.instCoeSortType k K = { coe := fun (L : FiniteGaloisIntermediateField k K) => ↥L.toIntermediateField }
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Turns the collection of finite Galois IntermediateFields of K/k
into a lattice.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- FiniteGaloisIntermediateField.instSup = { sup := fun (L₁ L₂ : FiniteGaloisIntermediateField k K) => FiniteGaloisIntermediateField.mk (L₁.toIntermediateField ⊔ L₂.toIntermediateField) }
Equations
- FiniteGaloisIntermediateField.instInf = { inf := fun (L₁ L₂ : FiniteGaloisIntermediateField k K) => FiniteGaloisIntermediateField.mk (L₁.toIntermediateField ⊓ L₂.toIntermediateField) }
Equations
- FiniteGaloisIntermediateField.instLattice = Function.Injective.lattice FiniteGaloisIntermediateField.toIntermediateField ⋯ ⋯ ⋯
Equations
- FiniteGaloisIntermediateField.instOrderBot = OrderBot.mk ⋯
The minimal (finite) Galois intermediate field containing a finite set s : Set K
in a
Galois extension K/k
defined as the the normal closure of the field obtained by adjoining
the set s : Set K
to k
.
Equations
Instances For
The (finite) Galois group Gal(L / k)
associated to a
L : FiniteGaloisIntermediateField k K
L
.
Equations
- L.finGaloisGroup = FiniteGrp.of (↥L.toIntermediateField ≃ₐ[k] ↥L.toIntermediateField)
Instances For
For FiniteGaloisIntermediateField
s L₁
and L₂
with L₂ ≤ L₁
the restriction homomorphism from Gal(L₁/k)
to Gal(L₂/k)
Equations
- finGaloisGroupMap le = FiniteGrp.ofHom (AlgEquiv.restrictNormalHom ↥(Opposite.unop L₂).toIntermediateField)
Instances For
The functor from FiniteGaloisIntermediateField
(ordered by reverse inclusion) to FiniteGrp
,
mapping each intermediate field K/L/k
to Gal (L/k)
.
Equations
- One or more equations did not get rendered due to their size.