Documentation

Mathlib.Algebra.Group.Subgroup.Defs

Subgroups #

This file defines multiplicative and additive subgroups as an extension of submonoids, in a bundled form (unbundled subgroups are in Deprecated/Subgroups.lean).

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

class InvMemClass (S : Type u_5) (G : outParam (Type u_6)) [Inv G] [SetLike S G] :

InvMemClass S G states S is a type of subsets s ⊆ G closed under inverses.

  • inv_mem : ∀ {s : S} {x : G}, x sx⁻¹ s

    s is closed under inverses

Instances
    theorem InvMemClass.inv_mem {S : Type u_5} {G : outParam (Type u_6)} :
    ∀ {inst : Inv G} {inst_1 : SetLike S G} [self : InvMemClass S G] {s : S} {x : G}, x sx⁻¹ s

    s is closed under inverses

    class NegMemClass (S : Type u_5) (G : outParam (Type u_6)) [Neg G] [SetLike S G] :

    NegMemClass S G states S is a type of subsets s ⊆ G closed under negation.

    • neg_mem : ∀ {s : S} {x : G}, x s-x s

      s is closed under negation

    Instances
      theorem NegMemClass.neg_mem {S : Type u_5} {G : outParam (Type u_6)} :
      ∀ {inst : Neg G} {inst_1 : SetLike S G} [self : NegMemClass S G] {s : S} {x : G}, x s-x s

      s is closed under negation

      SubgroupClass S G states S is a type of subsets s ⊆ G that are subgroups of G.

        Instances

          AddSubgroupClass S G states S is a type of subsets s ⊆ G that are additive subgroups of G.

            Instances
              @[simp]
              theorem inv_mem_iff {S : Type u_5} {G : Type u_6} [InvolutiveInv G] :
              ∀ {x : SetLike S G} [inst : InvMemClass S G] {H : S} {x_1 : G}, x_1⁻¹ H x_1 H
              @[simp]
              theorem neg_mem_iff {S : Type u_5} {G : Type u_6} [InvolutiveNeg G] :
              ∀ {x : SetLike S G} [inst : NegMemClass S G] {H : S} {x_1 : G}, -x_1 H x_1 H
              theorem div_mem {M : Type u_5} {S : Type u_6} [DivInvMonoid M] [SetLike S M] [hSM : SubgroupClass S M] {H : S} {x : M} {y : M} (hx : x H) (hy : y H) :
              x / y H

              A subgroup is closed under division.

              theorem sub_mem {M : Type u_5} {S : Type u_6} [SubNegMonoid M] [SetLike S M] [hSM : AddSubgroupClass S M] {H : S} {x : M} {y : M} (hx : x H) (hy : y H) :
              x - y H

              An additive subgroup is closed under subtraction.

              theorem zpow_mem {M : Type u_5} {S : Type u_6} [DivInvMonoid M] [SetLike S M] [hSM : SubgroupClass S M] {K : S} {x : M} (hx : x K) (n : ) :
              x ^ n K
              theorem zsmul_mem {M : Type u_5} {S : Type u_6} [SubNegMonoid M] [SetLike S M] [hSM : AddSubgroupClass S M] {K : S} {x : M} (hx : x K) (n : ) :
              n x K
              theorem exists_inv_mem_iff_exists_mem {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] {P : GProp} :
              (∃ xH, P x⁻¹) xH, P x
              theorem exists_neg_mem_iff_exists_mem {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] {P : GProp} :
              (∃ xH, P (-x)) xH, P x
              theorem mul_mem_cancel_right {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] {x : G} {y : G} (h : x H) :
              y * x H y H
              theorem add_mem_cancel_right {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] {x : G} {y : G} (h : x H) :
              y + x H y H
              theorem mul_mem_cancel_left {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] {x : G} {y : G} (h : x H) :
              x * y H y H
              theorem add_mem_cancel_left {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] {x : G} {y : G} (h : x H) :
              x + y H y H
              instance InvMemClass.inv {G : Type u_1} {S : Type u_2} [Inv G] [SetLike S G] [InvMemClass S G] {H : S} :
              Inv H

              A subgroup of a group inherits an inverse.

              Equations
              • InvMemClass.inv = { inv := fun (a : H) => (↑a)⁻¹, }
              instance NegMemClass.neg {G : Type u_1} {S : Type u_2} [Neg G] [SetLike S G] [NegMemClass S G] {H : S} :
              Neg H

              An additive subgroup of an AddGroup inherits an inverse.

              Equations
              • NegMemClass.neg = { neg := fun (a : H) => -a, }
              @[simp]
              theorem InvMemClass.coe_inv {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) :
              x⁻¹ = (↑x)⁻¹
              @[simp]
              theorem NegMemClass.coe_neg {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) :
              (-x) = -x
              @[deprecated]
              theorem SubgroupClass.coe_inv {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) :
              x⁻¹ = (↑x)⁻¹

              Alias of InvMemClass.coe_inv.

              @[deprecated]
              theorem AddSubgroupClass.coe_neg {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) :
              (-x) = -x
              theorem SubgroupClass.subset_union {G : Type u_1} [Group G] {S : Type u_6} [SetLike S G] [SubgroupClass S G] {H : S} {K : S} {L : S} :
              H K L H K H L
              theorem AddSubgroupClass.subset_union {G : Type u_1} [AddGroup G] {S : Type u_6} [SetLike S G] [AddSubgroupClass S G] {H : S} {K : S} {L : S} :
              H K L H K H L
              instance SubgroupClass.div {G : Type u_1} {S : Type u_2} [DivInvMonoid G] [SetLike S G] [SubgroupClass S G] {H : S} :
              Div H

              A subgroup of a group inherits a division

              Equations
              • SubgroupClass.div = { div := fun (a b : H) => a / b, }
              instance AddSubgroupClass.sub {G : Type u_1} {S : Type u_2} [SubNegMonoid G] [SetLike S G] [AddSubgroupClass S G] {H : S} :
              Sub H

              An additive subgroup of an AddGroup inherits a subtraction.

              Equations
              • AddSubgroupClass.sub = { sub := fun (a b : H) => a - b, }
              instance AddSubgroupClass.zsmul {M : Type u_7} {S : Type u_8} [SubNegMonoid M] [SetLike S M] [AddSubgroupClass S M] {H : S} :
              SMul H

              An additive subgroup of an AddGroup inherits an integer scaling.

              Equations
              • AddSubgroupClass.zsmul = { smul := fun (n : ) (a : H) => n a, }
              instance SubgroupClass.zpow {M : Type u_7} {S : Type u_8} [DivInvMonoid M] [SetLike S M] [SubgroupClass S M] {H : S} :
              Pow H

              A subgroup of a group inherits an integer power.

              Equations
              • SubgroupClass.zpow = { pow := fun (a : H) (n : ) => a ^ n, }
              @[simp]
              theorem SubgroupClass.coe_div {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) (y : H) :
              (x / y) = x / y
              @[simp]
              theorem AddSubgroupClass.coe_sub {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) (y : H) :
              (x - y) = x - y
              @[instance 75]
              instance SubgroupClass.toGroup {G : Type u_1} [Group G] {S : Type u_6} (H : S) [SetLike S G] [SubgroupClass S G] :
              Group H

              A subgroup of a group inherits a group structure.

              Equations
              @[instance 75]
              instance AddSubgroupClass.toAddGroup {G : Type u_1} [AddGroup G] {S : Type u_6} (H : S) [SetLike S G] [AddSubgroupClass S G] :

              An additive subgroup of an AddGroup inherits an AddGroup structure.

              Equations
              @[instance 75]
              instance SubgroupClass.toCommGroup {S : Type u_6} (H : S) {G : Type u_7} [CommGroup G] [SetLike S G] [SubgroupClass S G] :

              A subgroup of a CommGroup is a CommGroup.

              Equations
              @[instance 75]
              instance AddSubgroupClass.toAddCommGroup {S : Type u_6} (H : S) {G : Type u_7} [AddCommGroup G] [SetLike S G] [AddSubgroupClass S G] :

              An additive subgroup of an AddCommGroup is an AddCommGroup.

              Equations
              def SubgroupClass.subtype {G : Type u_1} [Group G] {S : Type u_6} (H : S) [SetLike S G] [SubgroupClass S G] :
              H →* G

              The natural group hom from a subgroup of group G to G.

              Equations
              • H = { toFun := Subtype.val, map_one' := , map_mul' := }
              Instances For
                def AddSubgroupClass.subtype {G : Type u_1} [AddGroup G] {S : Type u_6} (H : S) [SetLike S G] [AddSubgroupClass S G] :
                H →+ G

                The natural group hom from an additive subgroup of AddGroup G to G.

                Equations
                • H = { toFun := Subtype.val, map_zero' := , map_add' := }
                Instances For
                  @[simp]
                  theorem SubgroupClass.coeSubtype {G : Type u_1} [Group G] {S : Type u_6} (H : S) [SetLike S G] [SubgroupClass S G] :
                  H = Subtype.val
                  @[simp]
                  theorem AddSubgroupClass.coeSubtype {G : Type u_1} [AddGroup G] {S : Type u_6} (H : S) [SetLike S G] [AddSubgroupClass S G] :
                  H = Subtype.val
                  @[simp]
                  theorem SubgroupClass.coe_pow {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) (n : ) :
                  (x ^ n) = x ^ n
                  @[simp]
                  theorem AddSubgroupClass.coe_nsmul {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) (n : ) :
                  (n x) = n x
                  @[simp]
                  theorem SubgroupClass.coe_zpow {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) (n : ) :
                  (x ^ n) = x ^ n
                  @[simp]
                  theorem AddSubgroupClass.coe_zsmul {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) (n : ) :
                  (n x) = n x
                  def SubgroupClass.inclusion {G : Type u_1} [Group G] {S : Type u_6} [SetLike S G] [SubgroupClass S G] {H : S} {K : S} (h : H K) :
                  H →* K

                  The inclusion homomorphism from a subgroup H contained in K to K.

                  Equations
                  Instances For
                    def AddSubgroupClass.inclusion {G : Type u_1} [AddGroup G] {S : Type u_6} [SetLike S G] [AddSubgroupClass S G] {H : S} {K : S} (h : H K) :
                    H →+ K

                    The inclusion homomorphism from an additive subgroup H contained in K to K.

                    Equations
                    Instances For
                      @[simp]
                      theorem SubgroupClass.inclusion_self {G : Type u_1} [Group G] {S : Type u_6} {H : S} [SetLike S G] [SubgroupClass S G] (x : H) :
                      @[simp]
                      theorem AddSubgroupClass.inclusion_self {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} [SetLike S G] [AddSubgroupClass S G] (x : H) :
                      @[simp]
                      theorem SubgroupClass.inclusion_mk {G : Type u_1} [Group G] {S : Type u_6} {H : S} {K : S} [SetLike S G] [SubgroupClass S G] {h : H K} (x : G) (hx : x H) :
                      (SubgroupClass.inclusion h) x, hx = x,
                      @[simp]
                      theorem AddSubgroupClass.inclusion_mk {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} {K : S} [SetLike S G] [AddSubgroupClass S G] {h : H K} (x : G) (hx : x H) :
                      (AddSubgroupClass.inclusion h) x, hx = x,
                      theorem SubgroupClass.inclusion_right {G : Type u_1} [Group G] {S : Type u_6} {H : S} {K : S} [SetLike S G] [SubgroupClass S G] (h : H K) (x : K) (hx : x H) :
                      (SubgroupClass.inclusion h) x, hx = x
                      theorem AddSubgroupClass.inclusion_right {G : Type u_1} [AddGroup G] {S : Type u_6} {H : S} {K : S} [SetLike S G] [AddSubgroupClass S G] (h : H K) (x : K) (hx : x H) :
                      (AddSubgroupClass.inclusion h) x, hx = x
                      @[simp]
                      theorem SubgroupClass.inclusion_inclusion {G : Type u_1} [Group G] {S : Type u_6} {H : S} {K : S} [SetLike S G] [SubgroupClass S G] {L : S} (hHK : H K) (hKL : K L) (x : H) :
                      @[simp]
                      theorem SubgroupClass.coe_inclusion {G : Type u_1} [Group G] {S : Type u_6} [SetLike S G] [SubgroupClass S G] {H : S} {K : S} {h : H K} (a : H) :
                      ((SubgroupClass.inclusion h) a) = a
                      @[simp]
                      theorem AddSubgroupClass.coe_inclusion {G : Type u_1} [AddGroup G] {S : Type u_6} [SetLike S G] [AddSubgroupClass S G] {H : S} {K : S} {h : H K} (a : H) :
                      @[simp]
                      theorem SubgroupClass.subtype_comp_inclusion {G : Type u_1} [Group G] {S : Type u_6} [SetLike S G] [SubgroupClass S G] {H : S} {K : S} (hH : H K) :
                      (↑K).comp (SubgroupClass.inclusion hH) = H
                      @[simp]
                      theorem AddSubgroupClass.subtype_comp_inclusion {G : Type u_1} [AddGroup G] {S : Type u_6} [SetLike S G] [AddSubgroupClass S G] {H : S} {K : S} (hH : H K) :
                      (↑K).comp (AddSubgroupClass.inclusion hH) = H
                      structure Subgroup (G : Type u_5) [Group G] extends Submonoid , Subsemigroup :
                      Type u_5

                      A subgroup of a group G is a subset containing 1, closed under multiplication and closed under multiplicative inverse.

                        Instances For
                          theorem Subgroup.inv_mem' {G : Type u_5} [Group G] (self : Subgroup G) {x : G} :
                          x self.carrierx⁻¹ self.carrier

                          G is closed under inverses

                          structure AddSubgroup (G : Type u_5) [AddGroup G] extends AddSubmonoid , AddSubsemigroup :
                          Type u_5

                          An additive subgroup of an additive group G is a subset containing 0, closed under addition and additive inverse.

                            Instances For
                              theorem AddSubgroup.neg_mem' {G : Type u_5} [AddGroup G] (self : AddSubgroup G) {x : G} :
                              x self.carrier-x self.carrier

                              G is closed under negation

                              instance Subgroup.instSetLike {G : Type u_1} [Group G] :
                              Equations
                              • Subgroup.instSetLike = { coe := fun (s : Subgroup G) => s.carrier, coe_injective' := }
                              Equations
                              • AddSubgroup.instSetLike = { coe := fun (s : AddSubgroup G) => s.carrier, coe_injective' := }
                              Equations
                              • =
                              @[simp]
                              theorem Subgroup.mem_carrier {G : Type u_1} [Group G] {s : Subgroup G} {x : G} :
                              x s.carrier x s
                              @[simp]
                              theorem AddSubgroup.mem_carrier {G : Type u_1} [AddGroup G] {s : AddSubgroup G} {x : G} :
                              x s.carrier x s
                              @[simp]
                              theorem Subgroup.mem_mk {G : Type u_1} [Group G] {s : Set G} {x : G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) :
                              x { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } x s
                              @[simp]
                              theorem AddSubgroup.mem_mk {G : Type u_1} [AddGroup G] {s : Set G} {x : G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) :
                              x { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } x s
                              @[simp]
                              theorem Subgroup.coe_set_mk {G : Type u_1} [Group G] {s : Set G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) :
                              { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } = s
                              @[simp]
                              theorem AddSubgroup.coe_set_mk {G : Type u_1} [AddGroup G] {s : Set G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) :
                              { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } = s
                              @[simp]
                              theorem Subgroup.mk_le_mk {G : Type u_1} [Group G] {s : Set G} {t : Set G} (h_one : ∀ {a b : G}, a sb sa * b s) (h_mul : s 1) (h_inv : ∀ {x : G}, x { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrierx⁻¹ { carrier := s, mul_mem' := h_one, one_mem' := h_mul }.carrier) (h_one' : ∀ {a b : G}, a tb ta * b t) (h_mul' : t 1) (h_inv' : ∀ {x : G}, x { carrier := t, mul_mem' := h_one', one_mem' := h_mul' }.carrierx⁻¹ { carrier := t, mul_mem' := h_one', one_mem' := h_mul' }.carrier) :
                              { carrier := s, mul_mem' := h_one, one_mem' := h_mul, inv_mem' := h_inv } { carrier := t, mul_mem' := h_one', one_mem' := h_mul', inv_mem' := h_inv' } s t
                              @[simp]
                              theorem AddSubgroup.mk_le_mk {G : Type u_1} [AddGroup G] {s : Set G} {t : Set G} (h_one : ∀ {a b : G}, a sb sa + b s) (h_mul : s 0) (h_inv : ∀ {x : G}, x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier-x { carrier := s, add_mem' := h_one, zero_mem' := h_mul }.carrier) (h_one' : ∀ {a b : G}, a tb ta + b t) (h_mul' : t 0) (h_inv' : ∀ {x : G}, x { carrier := t, add_mem' := h_one', zero_mem' := h_mul' }.carrier-x { carrier := t, add_mem' := h_one', zero_mem' := h_mul' }.carrier) :
                              { carrier := s, add_mem' := h_one, zero_mem' := h_mul, neg_mem' := h_inv } { carrier := t, add_mem' := h_one', zero_mem' := h_mul', neg_mem' := h_inv' } s t
                              @[simp]
                              theorem Subgroup.coe_toSubmonoid {G : Type u_1} [Group G] (K : Subgroup G) :
                              K.toSubmonoid = K
                              @[simp]
                              theorem AddSubgroup.coe_toAddSubmonoid {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
                              K.toAddSubmonoid = K
                              @[simp]
                              theorem Subgroup.mem_toSubmonoid {G : Type u_1} [Group G] (K : Subgroup G) (x : G) :
                              x K.toSubmonoid x K
                              @[simp]
                              theorem AddSubgroup.mem_toAddSubmonoid {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (x : G) :
                              x K.toAddSubmonoid x K
                              theorem Subgroup.toSubmonoid_injective {G : Type u_1} [Group G] :
                              Function.Injective Subgroup.toSubmonoid
                              theorem AddSubgroup.toAddSubmonoid_injective {G : Type u_1} [AddGroup G] :
                              Function.Injective AddSubgroup.toAddSubmonoid
                              @[simp]
                              theorem Subgroup.toSubmonoid_eq {G : Type u_1} [Group G] {p : Subgroup G} {q : Subgroup G} :
                              p.toSubmonoid = q.toSubmonoid p = q
                              @[simp]
                              theorem AddSubgroup.toAddSubmonoid_eq {G : Type u_1} [AddGroup G] {p : AddSubgroup G} {q : AddSubgroup G} :
                              p.toAddSubmonoid = q.toAddSubmonoid p = q
                              theorem Subgroup.toSubmonoid_strictMono {G : Type u_1} [Group G] :
                              StrictMono Subgroup.toSubmonoid
                              theorem AddSubgroup.toAddSubmonoid_strictMono {G : Type u_1} [AddGroup G] :
                              StrictMono AddSubgroup.toAddSubmonoid
                              theorem Subgroup.toSubmonoid_mono {G : Type u_1} [Group G] :
                              Monotone Subgroup.toSubmonoid
                              theorem AddSubgroup.toAddSubmonoid_mono {G : Type u_1} [AddGroup G] :
                              Monotone AddSubgroup.toAddSubmonoid
                              @[simp]
                              theorem Subgroup.toSubmonoid_le {G : Type u_1} [Group G] {p : Subgroup G} {q : Subgroup G} :
                              p.toSubmonoid q.toSubmonoid p q
                              @[simp]
                              theorem AddSubgroup.toAddSubmonoid_le {G : Type u_1} [AddGroup G] {p : AddSubgroup G} {q : AddSubgroup G} :
                              p.toAddSubmonoid q.toAddSubmonoid p q
                              @[simp]
                              theorem Subgroup.coe_nonempty {G : Type u_1} [Group G] (s : Subgroup G) :
                              (↑s).Nonempty
                              @[simp]
                              theorem AddSubgroup.coe_nonempty {G : Type u_1} [AddGroup G] (s : AddSubgroup G) :
                              (↑s).Nonempty
                              def Subgroup.copy {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :

                              Copy of a subgroup with a new carrier equal to the old one. Useful to fix definitional equalities.

                              Equations
                              • K.copy s hs = { carrier := s, mul_mem' := , one_mem' := , inv_mem' := }
                              Instances For
                                def AddSubgroup.copy {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :

                                Copy of an additive subgroup with a new carrier equal to the old one. Useful to fix definitional equalities

                                Equations
                                • K.copy s hs = { carrier := s, add_mem' := , zero_mem' := , neg_mem' := }
                                Instances For
                                  @[simp]
                                  theorem Subgroup.coe_copy {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :
                                  (K.copy s hs) = s
                                  @[simp]
                                  theorem AddSubgroup.coe_copy {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :
                                  (K.copy s hs) = s
                                  theorem Subgroup.copy_eq {G : Type u_1} [Group G] (K : Subgroup G) (s : Set G) (hs : s = K) :
                                  K.copy s hs = K
                                  theorem AddSubgroup.copy_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) (s : Set G) (hs : s = K) :
                                  K.copy s hs = K
                                  theorem AddSubgroup.ext {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} (h : ∀ (x : G), x H x K) :
                                  H = K

                                  Two AddSubgroups are equal if they have the same elements.

                                  theorem Subgroup.ext {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (h : ∀ (x : G), x H x K) :
                                  H = K

                                  Two subgroups are equal if they have the same elements.

                                  theorem Subgroup.one_mem {G : Type u_1} [Group G] (H : Subgroup G) :
                                  1 H

                                  A subgroup contains the group's 1.

                                  theorem AddSubgroup.zero_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                  0 H

                                  An AddSubgroup contains the group's 0.

                                  theorem Subgroup.mul_mem {G : Type u_1} [Group G] (H : Subgroup G) {x : G} {y : G} :
                                  x Hy Hx * y H

                                  A subgroup is closed under multiplication.

                                  theorem AddSubgroup.add_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} {y : G} :
                                  x Hy Hx + y H

                                  An AddSubgroup is closed under addition.

                                  theorem Subgroup.inv_mem {G : Type u_1} [Group G] (H : Subgroup G) {x : G} :
                                  x Hx⁻¹ H

                                  A subgroup is closed under inverse.

                                  theorem AddSubgroup.neg_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} :
                                  x H-x H

                                  An AddSubgroup is closed under inverse.

                                  theorem Subgroup.div_mem {G : Type u_1} [Group G] (H : Subgroup G) {x : G} {y : G} (hx : x H) (hy : y H) :
                                  x / y H

                                  A subgroup is closed under division.

                                  theorem AddSubgroup.sub_mem {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} {y : G} (hx : x H) (hy : y H) :
                                  x - y H

                                  An AddSubgroup is closed under subtraction.

                                  theorem Subgroup.inv_mem_iff {G : Type u_1} [Group G] (H : Subgroup G) {x : G} :
                                  x⁻¹ H x H
                                  theorem AddSubgroup.neg_mem_iff {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} :
                                  -x H x H
                                  theorem Subgroup.exists_inv_mem_iff_exists_mem {G : Type u_1} [Group G] (K : Subgroup G) {P : GProp} :
                                  (∃ xK, P x⁻¹) xK, P x
                                  theorem AddSubgroup.exists_neg_mem_iff_exists_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {P : GProp} :
                                  (∃ xK, P (-x)) xK, P x
                                  theorem Subgroup.mul_mem_cancel_right {G : Type u_1} [Group G] (H : Subgroup G) {x : G} {y : G} (h : x H) :
                                  y * x H y H
                                  theorem AddSubgroup.add_mem_cancel_right {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} {y : G} (h : x H) :
                                  y + x H y H
                                  theorem Subgroup.mul_mem_cancel_left {G : Type u_1} [Group G] (H : Subgroup G) {x : G} {y : G} (h : x H) :
                                  x * y H y H
                                  theorem AddSubgroup.add_mem_cancel_left {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {x : G} {y : G} (h : x H) :
                                  x + y H y H
                                  theorem Subgroup.pow_mem {G : Type u_1} [Group G] (K : Subgroup G) {x : G} (hx : x K) (n : ) :
                                  x ^ n K
                                  theorem AddSubgroup.nsmul_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {x : G} (hx : x K) (n : ) :
                                  n x K
                                  theorem Subgroup.zpow_mem {G : Type u_1} [Group G] (K : Subgroup G) {x : G} (hx : x K) (n : ) :
                                  x ^ n K
                                  theorem AddSubgroup.zsmul_mem {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {x : G} (hx : x K) (n : ) :
                                  n x K
                                  def Subgroup.ofDiv {G : Type u_1} [Group G] (s : Set G) (hsn : s.Nonempty) (hs : xs, ys, x * y⁻¹ s) :

                                  Construct a subgroup from a nonempty set that is closed under division.

                                  Equations
                                  • Subgroup.ofDiv s hsn hs = { carrier := s, mul_mem' := , one_mem' := , inv_mem' := }
                                  Instances For
                                    def AddSubgroup.ofSub {G : Type u_1} [AddGroup G] (s : Set G) (hsn : s.Nonempty) (hs : xs, ys, x + -y s) :

                                    Construct a subgroup from a nonempty set that is closed under subtraction

                                    Equations
                                    • AddSubgroup.ofSub s hsn hs = { carrier := s, add_mem' := , zero_mem' := , neg_mem' := }
                                    Instances For
                                      instance Subgroup.mul {G : Type u_1} [Group G] (H : Subgroup G) :
                                      Mul H

                                      A subgroup of a group inherits a multiplication.

                                      Equations
                                      • H.mul = H.mul
                                      instance AddSubgroup.add {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                      Add H

                                      An AddSubgroup of an AddGroup inherits an addition.

                                      Equations
                                      • H.add = H.add
                                      instance Subgroup.one {G : Type u_1} [Group G] (H : Subgroup G) :
                                      One H

                                      A subgroup of a group inherits a 1.

                                      Equations
                                      • H.one = H.one
                                      instance AddSubgroup.zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                      Zero H

                                      An AddSubgroup of an AddGroup inherits a zero.

                                      Equations
                                      • H.zero = H.zero
                                      instance Subgroup.inv {G : Type u_1} [Group G] (H : Subgroup G) :
                                      Inv H

                                      A subgroup of a group inherits an inverse.

                                      Equations
                                      • H.inv = { inv := fun (a : H) => (↑a)⁻¹, }
                                      instance AddSubgroup.neg {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                      Neg H

                                      An AddSubgroup of an AddGroup inherits an inverse.

                                      Equations
                                      • H.neg = { neg := fun (a : H) => -a, }
                                      instance Subgroup.div {G : Type u_1} [Group G] (H : Subgroup G) :
                                      Div H

                                      A subgroup of a group inherits a division

                                      Equations
                                      • H.div = { div := fun (a b : H) => a / b, }
                                      instance AddSubgroup.sub {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                      Sub H

                                      An AddSubgroup of an AddGroup inherits a subtraction.

                                      Equations
                                      • H.sub = { sub := fun (a b : H) => a - b, }
                                      instance AddSubgroup.nsmul {G : Type u_5} [AddGroup G] {H : AddSubgroup G} :
                                      SMul H

                                      An AddSubgroup of an AddGroup inherits a natural scaling.

                                      Equations
                                      • AddSubgroup.nsmul = { smul := fun (n : ) (a : H) => n a, }
                                      instance Subgroup.npow {G : Type u_1} [Group G] (H : Subgroup G) :
                                      Pow H

                                      A subgroup of a group inherits a natural power

                                      Equations
                                      • H.npow = { pow := fun (a : H) (n : ) => a ^ n, }
                                      instance AddSubgroup.zsmul {G : Type u_5} [AddGroup G] {H : AddSubgroup G} :
                                      SMul H

                                      An AddSubgroup of an AddGroup inherits an integer scaling.

                                      Equations
                                      • AddSubgroup.zsmul = { smul := fun (n : ) (a : H) => n a, }
                                      instance Subgroup.zpow {G : Type u_1} [Group G] (H : Subgroup G) :
                                      Pow H

                                      A subgroup of a group inherits an integer power

                                      Equations
                                      • H.zpow = { pow := fun (a : H) (n : ) => a ^ n, }
                                      @[simp]
                                      theorem Subgroup.coe_mul {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (y : H) :
                                      (x * y) = x * y
                                      @[simp]
                                      theorem AddSubgroup.coe_add {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (y : H) :
                                      (x + y) = x + y
                                      @[simp]
                                      theorem Subgroup.coe_one {G : Type u_1} [Group G] (H : Subgroup G) :
                                      1 = 1
                                      @[simp]
                                      theorem AddSubgroup.coe_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                      0 = 0
                                      @[simp]
                                      theorem Subgroup.coe_inv {G : Type u_1} [Group G] (H : Subgroup G) (x : H) :
                                      x⁻¹ = (↑x)⁻¹
                                      @[simp]
                                      theorem AddSubgroup.coe_neg {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) :
                                      (-x) = -x
                                      @[simp]
                                      theorem Subgroup.coe_div {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (y : H) :
                                      (x / y) = x / y
                                      @[simp]
                                      theorem AddSubgroup.coe_sub {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (y : H) :
                                      (x - y) = x - y
                                      theorem Subgroup.coe_mk {G : Type u_1} [Group G] (H : Subgroup G) (x : G) (hx : x H) :
                                      x, hx = x
                                      theorem AddSubgroup.coe_mk {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : G) (hx : x H) :
                                      x, hx = x
                                      @[simp]
                                      theorem Subgroup.coe_pow {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (n : ) :
                                      (x ^ n) = x ^ n
                                      @[simp]
                                      theorem AddSubgroup.coe_nsmul {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (n : ) :
                                      (n x) = n x
                                      theorem Subgroup.coe_zpow {G : Type u_1} [Group G] (H : Subgroup G) (x : H) (n : ) :
                                      (x ^ n) = x ^ n
                                      theorem AddSubgroup.coe_zsmul {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (x : H) (n : ) :
                                      (n x) = n x
                                      @[simp]
                                      theorem Subgroup.mk_eq_one {G : Type u_1} [Group G] (H : Subgroup G) {g : G} {h : g H} :
                                      g, h = 1 g = 1
                                      @[simp]
                                      theorem AddSubgroup.mk_eq_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) {g : G} {h : g H} :
                                      g, h = 0 g = 0
                                      instance Subgroup.toGroup {G : Type u_5} [Group G] (H : Subgroup G) :
                                      Group H

                                      A subgroup of a group inherits a group structure.

                                      Equations
                                      instance AddSubgroup.toAddGroup {G : Type u_5} [AddGroup G] (H : AddSubgroup G) :

                                      An AddSubgroup of an AddGroup inherits an AddGroup structure.

                                      Equations
                                      instance Subgroup.toCommGroup {G : Type u_5} [CommGroup G] (H : Subgroup G) :

                                      A subgroup of a CommGroup is a CommGroup.

                                      Equations

                                      An AddSubgroup of an AddCommGroup is an AddCommGroup.

                                      Equations
                                      def Subgroup.subtype {G : Type u_1} [Group G] (H : Subgroup G) :
                                      H →* G

                                      The natural group hom from a subgroup of group G to G.

                                      Equations
                                      • H.subtype = { toFun := Subtype.val, map_one' := , map_mul' := }
                                      Instances For
                                        def AddSubgroup.subtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                        H →+ G

                                        The natural group hom from an AddSubgroup of AddGroup G to G.

                                        Equations
                                        • H.subtype = { toFun := Subtype.val, map_zero' := , map_add' := }
                                        Instances For
                                          @[simp]
                                          theorem Subgroup.coeSubtype {G : Type u_1} [Group G] (H : Subgroup G) :
                                          H.subtype = Subtype.val
                                          @[simp]
                                          theorem AddSubgroup.coeSubtype {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                          H.subtype = Subtype.val
                                          theorem Subgroup.subtype_injective {G : Type u_1} [Group G] (H : Subgroup G) :
                                          Function.Injective H.subtype
                                          def Subgroup.inclusion {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (h : H K) :
                                          H →* K

                                          The inclusion homomorphism from a subgroup H contained in K to K.

                                          Equations
                                          Instances For
                                            def AddSubgroup.inclusion {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} (h : H K) :
                                            H →+ K

                                            The inclusion homomorphism from an additive subgroup H contained in K to K.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem Subgroup.coe_inclusion {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} {h : H K} (a : H) :
                                              ((Subgroup.inclusion h) a) = a
                                              @[simp]
                                              theorem AddSubgroup.coe_inclusion {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} {h : H K} (a : H) :
                                              ((AddSubgroup.inclusion h) a) = a
                                              @[simp]
                                              theorem Subgroup.inclusion_inj {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (h : H K) {x : H} {y : H} :
                                              @[simp]
                                              theorem AddSubgroup.inclusion_inj {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} (h : H K) {x : H} {y : H} :
                                              @[simp]
                                              theorem Subgroup.subtype_comp_inclusion {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (hH : H K) :
                                              K.subtype.comp (Subgroup.inclusion hH) = H.subtype
                                              @[simp]
                                              theorem AddSubgroup.subtype_comp_inclusion {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} (hH : H K) :
                                              K.subtype.comp (AddSubgroup.inclusion hH) = H.subtype
                                              class Subgroup.Normal {G : Type u_1} [Group G] (H : Subgroup G) :

                                              A subgroup is normal if whenever n ∈ H, then g * n * g⁻¹ ∈ H for every g : G

                                              • conj_mem : nH, ∀ (g : G), g * n * g⁻¹ H

                                                N is closed under conjugation

                                              Instances
                                                theorem Subgroup.Normal.conj_mem {G : Type u_1} [Group G] {H : Subgroup G} (self : H.Normal) (n : G) :
                                                n H∀ (g : G), g * n * g⁻¹ H

                                                N is closed under conjugation

                                                class AddSubgroup.Normal {A : Type u_4} [AddGroup A] (H : AddSubgroup A) :

                                                An AddSubgroup is normal if whenever n ∈ H, then g + n - g ∈ H for every g : G

                                                • conj_mem : nH, ∀ (g : A), g + n + -g H

                                                  N is closed under additive conjugation

                                                Instances
                                                  theorem AddSubgroup.Normal.conj_mem {A : Type u_4} [AddGroup A] {H : AddSubgroup A} (self : H.Normal) (n : A) :
                                                  n H∀ (g : A), g + n + -g H

                                                  N is closed under additive conjugation

                                                  @[instance 100]
                                                  instance Subgroup.normal_of_comm {G : Type u_5} [CommGroup G] (H : Subgroup G) :
                                                  H.Normal
                                                  Equations
                                                  • =
                                                  @[instance 100]
                                                  instance AddSubgroup.normal_of_comm {G : Type u_5} [AddCommGroup G] (H : AddSubgroup G) :
                                                  H.Normal
                                                  Equations
                                                  • =
                                                  theorem Subgroup.Normal.conj_mem' {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) (n : G) (hn : n H) (g : G) :
                                                  g⁻¹ * n * g H
                                                  theorem AddSubgroup.Normal.conj_mem' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) (n : G) (hn : n H) (g : G) :
                                                  -g + n + g H
                                                  theorem Subgroup.Normal.mem_comm {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) {a : G} {b : G} (h : a * b H) :
                                                  b * a H
                                                  theorem AddSubgroup.Normal.mem_comm {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) {a : G} {b : G} (h : a + b H) :
                                                  b + a H
                                                  theorem Subgroup.Normal.mem_comm_iff {G : Type u_1} [Group G] {H : Subgroup G} (nH : H.Normal) {a : G} {b : G} :
                                                  a * b H b * a H
                                                  theorem AddSubgroup.Normal.mem_comm_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} (nH : H.Normal) {a : G} {b : G} :
                                                  a + b H b + a H
                                                  def Subgroup.normalizer {G : Type u_1} [Group G] (H : Subgroup G) :

                                                  The normalizer of H is the largest subgroup of G inside which H is normal.

                                                  Equations
                                                  • H.normalizer = { carrier := {g : G | ∀ (n : G), n H g * n * g⁻¹ H}, mul_mem' := , one_mem' := , inv_mem' := }
                                                  Instances For

                                                    The normalizer of H is the largest subgroup of G inside which H is normal.

                                                    Equations
                                                    • H.normalizer = { carrier := {g : G | ∀ (n : G), n H g + n + -g H}, add_mem' := , zero_mem' := , neg_mem' := }
                                                    Instances For
                                                      def Subgroup.setNormalizer {G : Type u_1} [Group G] (S : Set G) :

                                                      The setNormalizer of S is the subgroup of G whose elements satisfy g*S*g⁻¹=S

                                                      Equations
                                                      Instances For

                                                        The setNormalizer of S is the subgroup of G whose elements satisfy g+S-g=S.

                                                        Equations
                                                        Instances For
                                                          theorem Subgroup.mem_normalizer_iff {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                          g H.normalizer ∀ (h : G), h H g * h * g⁻¹ H
                                                          theorem AddSubgroup.mem_normalizer_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                          g H.normalizer ∀ (h : G), h H g + h + -g H
                                                          theorem Subgroup.mem_normalizer_iff'' {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                          g H.normalizer ∀ (h : G), h H g⁻¹ * h * g H
                                                          theorem AddSubgroup.mem_normalizer_iff'' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                          g H.normalizer ∀ (h : G), h H -g + h + g H
                                                          theorem Subgroup.mem_normalizer_iff' {G : Type u_1} [Group G] {H : Subgroup G} {g : G} :
                                                          g H.normalizer ∀ (n : G), n * g H g * n H
                                                          theorem AddSubgroup.mem_normalizer_iff' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {g : G} :
                                                          g H.normalizer ∀ (n : G), n + g H g + n H
                                                          theorem Subgroup.le_normalizer {G : Type u_1} [Group G] {H : Subgroup G} :
                                                          H H.normalizer
                                                          theorem AddSubgroup.le_normalizer {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                                                          H H.normalizer
                                                          class Subgroup.IsCommutative {G : Type u_1} [Group G] (H : Subgroup G) :

                                                          Commutativity of a subgroup

                                                          Instances
                                                            theorem Subgroup.IsCommutative.is_comm {G : Type u_1} [Group G] {H : Subgroup G} (self : H.IsCommutative) :
                                                            Std.Commutative fun (x1 x2 : H) => x1 * x2

                                                            * is commutative on H

                                                            Commutativity of an additive subgroup

                                                            Instances
                                                              theorem AddSubgroup.IsCommutative.is_comm {A : Type u_4} [AddGroup A] {H : AddSubgroup A} (self : H.IsCommutative) :
                                                              Std.Commutative fun (x1 x2 : H) => x1 + x2

                                                              + is commutative on H

                                                              instance Subgroup.IsCommutative.commGroup {G : Type u_1} [Group G] (H : Subgroup G) [h : H.IsCommutative] :

                                                              A commutative subgroup is commutative.

                                                              Equations
                                                              instance AddSubgroup.IsCommutative.addCommGroup {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [h : H.IsCommutative] :

                                                              A commutative subgroup is commutative.

                                                              Equations
                                                              instance Subgroup.commGroup_isCommutative {G : Type u_5} [CommGroup G] (H : Subgroup G) :
                                                              H.IsCommutative

                                                              A subgroup of a commutative group is commutative.

                                                              Equations
                                                              • =
                                                              instance AddSubgroup.addCommGroup_isCommutative {G : Type u_5} [AddCommGroup G] (H : AddSubgroup G) :
                                                              H.IsCommutative

                                                              A subgroup of a commutative group is commutative.

                                                              Equations
                                                              • =
                                                              theorem Subgroup.mul_comm_of_mem_isCommutative {G : Type u_1} [Group G] (H : Subgroup G) [H.IsCommutative] {a : G} {b : G} (ha : a H) (hb : b H) :
                                                              a * b = b * a
                                                              theorem AddSubgroup.add_comm_of_mem_isCommutative {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [H.IsCommutative] {a : G} {b : G} (ha : a H) (hb : b H) :
                                                              a + b = b + a