Documentation

Mathlib.FieldTheory.Galois.GaloisClosure

Main definitions and results #

In a field extension K/k

TODO #

The type of intermediate fields of K/k that are finite and Galois over k

    Instances For
      theorem FiniteGaloisIntermediateField.finiteDimensional {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (self : FiniteGaloisIntermediateField k K) :
      FiniteDimensional k self.toIntermediateField
      theorem FiniteGaloisIntermediateField.isGalois {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (self : FiniteGaloisIntermediateField k K) :
      IsGalois k self.toIntermediateField
      Equations
      Equations
      Equations
      • =
      instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] (L : FiniteGaloisIntermediateField k K) :
      IsGalois k L.toIntermediateField
      Equations
      • =
      theorem FiniteGaloisIntermediateField.val_injective {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] :
      Function.Injective FiniteGaloisIntermediateField.toIntermediateField
      instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldSup {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : IntermediateField k K) (L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
      IsGalois k (L₁ L₂)

      Turns the collection of finite Galois IntermediateFields of K/k into a lattice.

      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldInf {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : IntermediateField k K) (L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
      IsGalois k (L₁ L₂)
      Equations
      • =
      Equations
      Equations
      Equations
      Equations
      • FiniteGaloisIntermediateField.instOrderBot = OrderBot.mk
      @[simp]
      theorem FiniteGaloisIntermediateField.le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : FiniteGaloisIntermediateField k K) (L₂ : FiniteGaloisIntermediateField k K) :
      L₁ L₂ L₁.toIntermediateField L₂.toIntermediateField
      noncomputable def FiniteGaloisIntermediateField.adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :

      The minimal (finite) Galois intermediate field containing a finite set s : Set K in a Galois extension K/k defined as the the normal closure of the field obtained by adjoining the set s : Set K to k.

      Equations
      Instances For
        @[simp]
        theorem FiniteGaloisIntermediateField.adjoin_val {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
        theorem FiniteGaloisIntermediateField.subset_adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
        s (FiniteGaloisIntermediateField.adjoin k s).toIntermediateField
        theorem FiniteGaloisIntermediateField.adjoin_simple_le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] {x : K} {L : FiniteGaloisIntermediateField k K} :
        FiniteGaloisIntermediateField.adjoin k {x} L x L.toIntermediateField