Documentation

Mathlib.CategoryTheory.Triangulated.TStructure.Basic

t-structures on triangulated categories #

This files introduces the notion of t-structure on (pre)triangulated categories.

The first example of t-structure shall be the canonical t-structure on the derived category of an abelian category (TODO).

Given a t-structure t : TStructure C, we define type classes t.IsLE X n and t.IsGE X n in order to say that an object X : C is ≤ n or ≥ n for t.

Implementation notes #

We introduce the type of t-structures rather than a type class saying that we have fixed a t-structure on a certain category. The reason is that certain triangulated categories have several t-structures which one may want to use depending on the context.

TODO #

References #

TStructure C is the type of t-structures on the (pre)triangulated category C.

Instances For
    theorem CategoryTheory.Triangulated.TStructure.exists_triangle_zero_one {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] (self : CategoryTheory.Triangulated.TStructure C) (A : C) :
    ∃ (X : C) (Y : C) (_ : self.LE 0 X) (_ : self.GE 1 Y) (f : X A) (g : A Y) (h : Y (CategoryTheory.shiftFunctor C 1).obj X), CategoryTheory.Pretriangulated.Triangle.mk f g h CategoryTheory.Pretriangulated.distinguishedTriangles
    theorem CategoryTheory.Triangulated.TStructure.exists_triangle {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] (t : CategoryTheory.Triangulated.TStructure C) (A : C) (n₀ : ) (n₁ : ) (h : n₀ + 1 = n₁) :
    ∃ (X : C) (Y : C) (_ : t.LE n₀ X) (_ : t.GE n₁ Y) (f : X A) (g : A Y) (h : Y (CategoryTheory.shiftFunctor C 1).obj X), CategoryTheory.Pretriangulated.Triangle.mk f g h CategoryTheory.Pretriangulated.distinguishedTriangles

    Given a t-structure t on a pretriangulated category C, the property t.IsLE X n holds if X : C is ≤ n for the t-structure.

    • le : t.LE n X
    Instances
      theorem CategoryTheory.Triangulated.TStructure.IsLE.le {C : Type u_1} :
      ∀ {inst : CategoryTheory.Category.{u_2, u_1} C} {inst_1 : CategoryTheory.Preadditive C} {inst_2 : CategoryTheory.Limits.HasZeroObject C} {inst_3 : CategoryTheory.HasShift C } {inst_4 : ∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive} {inst_5 : CategoryTheory.Pretriangulated C} {t : CategoryTheory.Triangulated.TStructure C} {X : C} {n : } [self : t.IsLE X n], t.LE n X

      Given a t-structure t on a pretriangulated category C, the property t.IsGE X n holds if X : C is ≥ n for the t-structure.

      • ge : t.GE n X
      Instances
        theorem CategoryTheory.Triangulated.TStructure.IsGE.ge {C : Type u_1} :
        ∀ {inst : CategoryTheory.Category.{u_2, u_1} C} {inst_1 : CategoryTheory.Preadditive C} {inst_2 : CategoryTheory.Limits.HasZeroObject C} {inst_3 : CategoryTheory.HasShift C } {inst_4 : ∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive} {inst_5 : CategoryTheory.Pretriangulated C} {t : CategoryTheory.Triangulated.TStructure C} {X : C} {n : } [self : t.IsGE X n], t.GE n X