Documentation

Mathlib.CategoryTheory.ObjectProperty.Shift

Properties of objects on categories equipped with shift #

Given a predicate P : ObjectProperty C on objects of a category equipped with a shift by A, we define shifted properties of objects P.shift a for all a : A.

Given a predicate P : C → Prop on objects of a category equipped with a shift by A, this is the predicate which is satisfied by X if P (X⟦a⟧).

Equations
theorem CategoryTheory.ObjectProperty.prop_shift_iff {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a : A) (X : C) :
P.shift a X P ((shiftFunctor C a).obj X)
theorem CategoryTheory.ObjectProperty.shift_shift {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a b c : A) (h : a + b = c) [P.IsClosedUnderIsomorphisms] :
(P.shift b).shift a = P.shift c
@[deprecated CategoryTheory.ObjectProperty.shift (since := "2025-02-25")]

Alias of CategoryTheory.ObjectProperty.shift.


Given a predicate P : C → Prop on objects of a category equipped with a shift by A, this is the predicate which is satisfied by X if P (X⟦a⟧).

Equations
@[deprecated CategoryTheory.ObjectProperty.prop_shift_iff (since := "2025-02-25")]
theorem CategoryTheory.predicateShift_iff {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a : A) (X : C) :
P.shift a X P ((shiftFunctor C a).obj X)

Alias of CategoryTheory.ObjectProperty.prop_shift_iff.

@[deprecated CategoryTheory.ObjectProperty.shift_zero (since := "2025-02-25")]

Alias of CategoryTheory.ObjectProperty.shift_zero.

@[deprecated CategoryTheory.ObjectProperty.shift_shift (since := "2025-02-25")]
theorem CategoryTheory.predicateShift_predicateShift {C : Type u_1} [Category.{u_3, u_1} C] (P : ObjectProperty C) {A : Type u_2} [AddMonoid A] [HasShift C A] (a b c : A) (h : a + b = c) [P.IsClosedUnderIsomorphisms] :
(P.shift b).shift a = P.shift c

Alias of CategoryTheory.ObjectProperty.shift_shift.