The Dold-Kan correspondence for pseudoabelian categories #
In this file, for any idempotent complete additive category C
,
the Dold-Kan equivalence
Idempotents.DoldKan.Equivalence C : SimplicialObject C ≌ ChainComplex C ℕ
is obtained. It is deduced from the equivalence
Preadditive.DoldKan.Equivalence
between the respective idempotent
completions of these categories using the fact that when C
is idempotent complete,
then both SimplicialObject C
and ChainComplex C ℕ
are idempotent complete.
The construction of Idempotents.DoldKan.Equivalence
uses the tools
introduced in the file Compatibility.lean
. Doing so, the functor
Idempotents.DoldKan.N
of the equivalence is
the composition of N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)
(defined in FunctorN.lean
) and the inverse of the equivalence
ChainComplex C ℕ ≌ Karoubi (ChainComplex C ℕ)
. The functor
Idempotents.DoldKan.Γ
of the equivalence is by definition the functor
Γ₀
introduced in FunctorGamma.lean
.
(See Equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
The functor N
for the equivalence is obtained by composing
N' : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)
and the inverse
of the equivalence ChainComplex C ℕ ≌ Karoubi (ChainComplex C ℕ)
.
Equations
- CategoryTheory.Idempotents.DoldKan.N = AlgebraicTopology.DoldKan.N₁.comp (CategoryTheory.Idempotents.toKaroubiEquivalence (ChainComplex C ℕ)).inverse
Instances For
The functor Γ
for the equivalence is Γ'
.
Equations
- CategoryTheory.Idempotents.DoldKan.Γ = AlgebraicTopology.DoldKan.Γ₀
Instances For
A reformulation of the isomorphism toKaroubi (SimplicialObject C) ⋙ N₂ ≅ N₁
Equations
- CategoryTheory.Idempotents.DoldKan.isoN₁ = AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁
Instances For
A reformulation of the canonical isomorphism
toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ≅ Γ ⋙ toKaroubi (SimplicialObject C)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Dold-Kan equivalence for pseudoabelian categories given
by the functors N
and Γ
. It is obtained by applying the results in
Compatibility.lean
to the equivalence Preadditive.DoldKan.Equivalence
.
Equations
- CategoryTheory.Idempotents.DoldKan.equivalence = AlgebraicTopology.DoldKan.Compatibility.equivalence CategoryTheory.Idempotents.DoldKan.isoN₁ CategoryTheory.Idempotents.DoldKan.isoΓ₀
Instances For
The natural isomorphism NΓ' satisfies the compatibility that is needed for the construction of our counit isomorphism
η`
The counit isomorphism induced by N₁Γ₀
Equations
- CategoryTheory.Idempotents.DoldKan.η = AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso AlgebraicTopology.DoldKan.N₁Γ₀
Instances For
The unit isomorphism induced by Γ₂N₁
.
Equations
- CategoryTheory.Idempotents.DoldKan.ε = AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso CategoryTheory.Idempotents.DoldKan.isoΓ₀ AlgebraicTopology.DoldKan.Γ₂N₁