The counit isomorphism of the Dold-Kan equivalence
The purpose of this file is to construct natural isomorphisms
N₁Γ₀ : Γ₀ ⋙ N₁ ≅ toKaroubi (ChainComplex C ℕ)
and N₂Γ₂ : Γ₂ ⋙ N₂ ≅ 𝟭 (Karoubi (ChainComplex C ℕ))
.
(See Equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
def
AlgebraicTopology.DoldKan.Γ₀NondegComplexIso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
:
(AlgebraicTopology.DoldKan.Γ₀.splitting K).nondegComplex ≅ K
The isomorphism (Γ₀.splitting K).nondegComplex ≅ K
for all K : ChainComplex C ℕ
.
Equations
- AlgebraicTopology.DoldKan.Γ₀NondegComplexIso K = HomologicalComplex.Hom.isoOfComponents (fun (x : ℕ) => CategoryTheory.Iso.refl ((AlgebraicTopology.DoldKan.Γ₀.splitting K).nondegComplex.X x)) ⋯
Instances For
@[simp]
theorem
AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
(i : ℕ)
:
@[simp]
theorem
AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
(i : ℕ)
:
def
AlgebraicTopology.DoldKan.Γ₀'CompNondegComplexFunctor
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
AlgebraicTopology.DoldKan.Γ₀'.comp SimplicialObject.Split.nondegComplexFunctor ≅ CategoryTheory.Functor.id (ChainComplex C ℕ)
The natural isomorphism (Γ₀.splitting K).nondegComplex ≅ K
for K : ChainComplex C ℕ
.
Equations
- AlgebraicTopology.DoldKan.Γ₀'CompNondegComplexFunctor = CategoryTheory.NatIso.ofComponents AlgebraicTopology.DoldKan.Γ₀NondegComplexIso ⋯
Instances For
def
AlgebraicTopology.DoldKan.N₁Γ₀
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
AlgebraicTopology.DoldKan.Γ₀.comp AlgebraicTopology.DoldKan.N₁ ≅ CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)
The natural isomorphism Γ₀ ⋙ N₁ ≅ toKaroubi (ChainComplex C ℕ)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicTopology.DoldKan.N₁Γ₀_app
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
:
AlgebraicTopology.DoldKan.N₁Γ₀.app K = (AlgebraicTopology.DoldKan.Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.symm ≪≫ (CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)).mapIso (AlgebraicTopology.DoldKan.Γ₀NondegComplexIso K)
theorem
AlgebraicTopology.DoldKan.N₁Γ₀_hom_app
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
:
AlgebraicTopology.DoldKan.N₁Γ₀.hom.app K = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv
((CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)).map (AlgebraicTopology.DoldKan.Γ₀NondegComplexIso K).hom)
theorem
AlgebraicTopology.DoldKan.N₁Γ₀_inv_app
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
:
AlgebraicTopology.DoldKan.N₁Γ₀.inv.app K = CategoryTheory.CategoryStruct.comp
((CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)).map (AlgebraicTopology.DoldKan.Γ₀NondegComplexIso K).inv)
(AlgebraicTopology.DoldKan.Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.hom
@[simp]
theorem
AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
(n : ℕ)
:
(AlgebraicTopology.DoldKan.N₁Γ₀.hom.app K).f.f n = (AlgebraicTopology.DoldKan.Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.inv.f.f n
@[simp]
theorem
AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
(n : ℕ)
:
(AlgebraicTopology.DoldKan.N₁Γ₀.inv.app K).f.f n = (AlgebraicTopology.DoldKan.Γ₀.splitting K).toKaroubiNondegComplexIsoN₁.hom.f.f n
def
AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
(CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)).comp
(AlgebraicTopology.DoldKan.Γ₂.comp AlgebraicTopology.DoldKan.N₂) ≅ AlgebraicTopology.DoldKan.Γ₀.comp AlgebraicTopology.DoldKan.N₁
Compatibility isomorphism between toKaroubi _ ⋙ Γ₂ ⋙ N₂
and Γ₀ ⋙ N₁
which
are functors ChainComplex C ℕ ⥤ Karoubi (ChainComplex C ℕ)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(X : ChainComplex C ℕ)
:
(AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso.hom.app X).f = AlgebraicTopology.DoldKan.PInfty
@[simp]
theorem
AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(X : ChainComplex C ℕ)
:
(AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso.inv.app X).f = AlgebraicTopology.DoldKan.PInfty
def
AlgebraicTopology.DoldKan.N₂Γ₂
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
AlgebraicTopology.DoldKan.Γ₂.comp AlgebraicTopology.DoldKan.N₂ ≅ CategoryTheory.Functor.id (CategoryTheory.Idempotents.Karoubi (ChainComplex C ℕ))
The counit isomorphism of the Dold-Kan equivalence for additive categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(X : CategoryTheory.Idempotents.Karoubi (ChainComplex C ℕ))
(n : ℕ)
:
(AlgebraicTopology.DoldKan.N₂Γ₂.inv.app X).f.f n = CategoryTheory.CategoryStruct.comp (X.p.f n)
(((AlgebraicTopology.DoldKan.Γ₀.splitting X.X).cofan (Opposite.op (SimplexCategory.mk n))).inj
(SimplicialObject.Splitting.IndexSet.id (Opposite.op (SimplexCategory.mk n))))
theorem
AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
CategoryTheory.whiskerLeft (CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ))
AlgebraicTopology.DoldKan.N₂Γ₂.hom = CategoryTheory.CategoryStruct.comp AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso.hom AlgebraicTopology.DoldKan.N₁Γ₀.hom
theorem
AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preadditive C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
(K : ChainComplex C ℕ)
:
AlgebraicTopology.DoldKan.N₂Γ₂.hom.app ((CategoryTheory.Idempotents.toKaroubi (ChainComplex C ℕ)).obj K) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso.hom.app K)
(AlgebraicTopology.DoldKan.N₁Γ₀.hom.app K)