Documentation

Mathlib.AlgebraicTopology.SimplicialObject.Basic

Simplicial objects in a category. #

A simplicial object in a category C is a C-valued presheaf on SimplexCategory. (Similarly a cosimplicial object is functor SimplexCategory ⥤ C.)

Use the notation X _[n] in the Simplicial locale to obtain the n-th term of a (co)simplicial object X, where n is a natural number.

The category of simplicial objects valued in a category C. This is the category of contravariant functors from SimplexCategory to C.

Equations
Instances For

    Pretty printer defined by notation3 command.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      X _[n] denotes the nth-term of the simplicial object X

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Face maps for a simplicial object.

        Equations
        Instances For

          Degeneracy maps for a simplicial object.

          Equations
          Instances For

            The diagonal of a simplex is the long edge of the simplex.

            Equations
            Instances For

              Isomorphisms from identities in ℕ.

              Equations
              Instances For

                The generic case of the first simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_δ' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                CategoryTheory.CategoryStruct.comp (X j) (X i) = CategoryTheory.CategoryStruct.comp (X i.castSucc) (X (j.pred ))
                theorem CategoryTheory.SimplicialObject.δ_comp_δ'' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                CategoryTheory.CategoryStruct.comp (X j.succ) (X (i.castLT )) = CategoryTheory.CategoryStruct.comp (X i) (X j)

                The special case of the first simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_le {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :
                CategoryTheory.CategoryStruct.comp (X j.succ) (X i.castSucc) = CategoryTheory.CategoryStruct.comp (X i) (X j)

                The second simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :
                CategoryTheory.CategoryStruct.comp (X j.castSucc) (X i.succ) = CategoryTheory.CategoryStruct.comp (X i) (X j)

                The fourth simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                CategoryTheory.CategoryStruct.comp (X j) (X i) = CategoryTheory.CategoryStruct.comp (X (i.pred )) (X (j.castLT ))

                The fifth simplicial identity

                Since Truncated.inclusion is fully faithful, so is right Kan extension along it.

                Equations
                Instances For

                  Since Truncated.inclusion is fully faithful, so is left Kan extension along it.

                  Equations
                  Instances For
                    theorem CategoryTheory.SimplicialObject.Augmented.hom_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : CategoryTheory.SimplicialObject.Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                    f = g

                    The functor from augmented objects to arrows.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Functor composition induces a functor on augmented simplicial objects.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        Functor composition induces a functor on augmented simplicial objects.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          Augment a simplicial object with an object.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.augment_hom_app {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp (X.map g₁.op) f = CategoryTheory.CategoryStruct.comp (X.map g₂.op) f) (x✝ : SimplexCategoryᵒᵖ) :
                            (X.augment X₀ f w).hom.app x✝ = CategoryTheory.CategoryStruct.comp (X.map ((SimplexCategory.mk 0).const (Opposite.unop x✝) 0).op) f
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.augment_right {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp (X.map g₁.op) f = CategoryTheory.CategoryStruct.comp (X.map g₂.op) f) :
                            (X.augment X₀ f w).right = X₀
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.augment_left {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp (X.map g₁.op) f = CategoryTheory.CategoryStruct.comp (X.map g₂.op) f) :
                            (X.augment X₀ f w).left = X

                            Pretty printer defined by notation3 command.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              X _[n] denotes the nth-term of the cosimplicial object X

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Coface maps for a cosimplicial object.

                                Equations
                                Instances For

                                  Codegeneracy maps for a cosimplicial object.

                                  Equations
                                  Instances For

                                    Isomorphisms from identities in ℕ.

                                    Equations
                                    Instances For

                                      The generic case of the first cosimplicial identity

                                      theorem CategoryTheory.CosimplicialObject.δ_comp_δ' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                                      CategoryTheory.CategoryStruct.comp (X i) (X j) = CategoryTheory.CategoryStruct.comp (X (j.pred )) (X i.castSucc)
                                      theorem CategoryTheory.CosimplicialObject.δ_comp_δ'' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                                      CategoryTheory.CategoryStruct.comp (X (i.castLT )) (X j.succ) = CategoryTheory.CategoryStruct.comp (X j) (X i)

                                      The special case of the first cosimplicial identity

                                      theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_le {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :
                                      CategoryTheory.CategoryStruct.comp (X i.castSucc) (X j.succ) = CategoryTheory.CategoryStruct.comp (X j) (X i)

                                      The second cosimplicial identity

                                      The first part of the third cosimplicial identity

                                      theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :
                                      CategoryTheory.CategoryStruct.comp (X i.succ) (X j.castSucc) = CategoryTheory.CategoryStruct.comp (X j) (X i)

                                      The fourth cosimplicial identity

                                      theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt' {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                                      CategoryTheory.CategoryStruct.comp (X i) (X j) = CategoryTheory.CategoryStruct.comp (X (j.castLT )) (X (i.pred ))

                                      The fifth cosimplicial identity

                                      theorem CategoryTheory.CosimplicialObject.Augmented.hom_ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : CategoryTheory.CosimplicialObject.Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                                      f = g

                                      The functor from augmented objects to arrows.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        Functor composition induces a functor on augmented cosimplicial objects.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          Functor composition induces a functor on augmented cosimplicial objects.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            Augment a cosimplicial object with an object.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.augment_left {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp f (X.map g₁) = CategoryTheory.CategoryStruct.comp f (X.map g₂)) :
                                              (X.augment X₀ f w).left = X₀
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.augment_hom_app {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp f (X.map g₁) = CategoryTheory.CategoryStruct.comp f (X.map g₂)) (x✝ : SimplexCategory) :
                                              (X.augment X₀ f w).hom.app x✝ = CategoryTheory.CategoryStruct.comp f (X.map ((SimplexCategory.mk 0).const x✝ 0))
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.augment_right {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryTheory.CategoryStruct.comp f (X.map g₁) = CategoryTheory.CategoryStruct.comp f (X.map g₂)) :
                                              (X.augment X₀ f w).right = X
                                              @[simp]

                                              Construct an augmented cosimplicial object in the opposite category from an augmented simplicial object.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.SimplicialObject.Augmented.rightOp_right_map {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject.Augmented C) {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                                                X.rightOp.right.map f = (X.left.map f.op).op

                                                Construct an augmented simplicial object from an augmented cosimplicial object in the opposite category.

                                                Equations
                                                Instances For
                                                  @[simp]

                                                  Converting an augmented simplicial object to an augmented cosimplicial object and back is isomorphic to the given object.

                                                  Equations
                                                  Instances For

                                                    Converting an augmented cosimplicial object to an augmented simplicial object and back is isomorphic to the given object.

                                                    Equations
                                                    Instances For

                                                      A functorial version of Cosimplicial_object.Augmented.leftOp.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For

                                                        The contravariant categorical equivalence between augmented simplicial objects and augmented cosimplicial objects in the opposite category.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For