Documentation

Mathlib.CategoryTheory.Limits.HasLimits

Existence of limits and colimits #

In CategoryTheory.Limits.IsLimit we defined IsLimit c, the data showing that a cone c is a limit cone.

The two main structures defined in this file are:

HasLimit is a propositional typeclass (it's important that it is a proposition merely asserting the existence of a limit, as otherwise we would have non-defeq problems from incompatible instances).

While HasLimit only asserts the existence of a limit cone, we happily use the axiom of choice in mathlib, so there are convenience functions all depending on HasLimit F:

Key to using the HasLimit interface is that there is an @[ext] lemma stating that to check f = g, for f g : Z ⟶ limit F, it suffices to check f ≫ limit.π F j = g ≫ limit.π F j for every j. This, combined with @[simp] lemmas, makes it possible to prove many easy facts about limits using automation (e.g. tidy).

There are abbreviations HasLimitsOfShape J C and HasLimits C asserting the existence of classes of limits. Later more are introduced, for finite limits, special shapes of limits, etc.

Ideally, many results about limits should be stated first in terms of IsLimit, and then a result in terms of HasLimit derived from this. At this point, however, this is far from uniformly achieved in mathlib --- often statements are only written in terms of HasLimit.

Implementation #

At present we simply say everything twice, in order to handle both limits and colimits. It would be highly desirable to have some automation support, e.g. a @[dualize] attribute that behaves similarly to @[to_additive].

References #

structure CategoryTheory.Limits.LimitCone {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) :
Type (max (max u u₁) v)

LimitCone F contains a cone over F together with the information that it is a limit.

  • cone : Cone F

    The cone itself

  • isLimit : IsLimit self.cone

    The proof that is the limit cone

HasLimit F represents the mere existence of a limit for F.

Instances

Use the axiom of choice to extract explicit LimitCone F from HasLimit F.

Equations

C has limits of shape J if there exists a limit for every functor F : J ⥤ C.

  • has_limit (F : Functor J C) : HasLimit F

    All functors F : J ⥤ C from J have limits

Instances
@[reducible, inline]

C has all (small) limits if it has limits of every shape that is as big as its hom-sets.

Equations

An arbitrary choice of limit cone for a functor.

Equations

An arbitrary choice of limit object of a functor.

Equations
def CategoryTheory.Limits.limit.π {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (j : J) :
limit F F.obj j

The projection from the limit object to a value of the functor.

Equations
Instances For
theorem CategoryTheory.Limits.limit.π_comp_eqToHom {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] {j j' : J} (hj : j = j') :
CategoryStruct.comp (π F j) (eqToHom ) = π F j'
theorem CategoryTheory.Limits.limit.π_comp_eqToHom_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] {j j' : J} (hj : j = j') {Z : C} (h : F.obj j' Z) :
@[simp]
@[simp]
@[simp]
theorem CategoryTheory.Limits.limit.w {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] {j j' : J} (f : j j') :
CategoryStruct.comp (π F j) (F.map f) = π F j'
@[simp]
theorem CategoryTheory.Limits.limit.w_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] {j j' : J} (f : j j') {Z : C} (h : F.obj j' Z) :

Evidence that the arbitrary choice of cone provided by limit.cone F is a limit cone.

Equations

The morphism from the cone point of any other cone to the limit object.

Equations
@[simp]
@[simp]
theorem CategoryTheory.Limits.limit.lift_π {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] (c : Cone F) (j : J) :
CategoryStruct.comp (lift F c) (π F j) = c.π.app j
@[simp]
theorem CategoryTheory.Limits.limit.lift_π_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] (c : Cone F) (j : J) {Z : C} (h : F.obj j Z) :
def CategoryTheory.Limits.limMap {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] [HasLimit G] (α : F G) :

Functoriality of limits.

Usually this morphism should be accessed through lim.map, but may be needed separately when you have specified limits for the source and target functors, but not necessarily for all functors of shape J.

Equations
Instances For
@[simp]
theorem CategoryTheory.Limits.limMap_π {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] [HasLimit G] (α : F G) (j : J) :
@[simp]
theorem CategoryTheory.Limits.limMap_π_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] [HasLimit G] (α : F G) (j : J) {Z : C} (h : G.obj j Z) :

The cone morphism from any cone to the arbitrary choice of limit cone.

Equations
theorem CategoryTheory.Limits.limit.existsUnique {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] (t : Cone F) :
∃! l : t.pt limit F, ∀ (j : J), CategoryStruct.comp l (π F j) = t.π.app j

Given any other limit cone for F, the chosen limit F is isomorphic to the cone point.

Equations
theorem CategoryTheory.Limits.limit.hom_ext {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] {X : C} {f f' : X limit F} (w : ∀ (j : J), CategoryStruct.comp f (π F j) = CategoryStruct.comp f' (π F j)) :
f = f'
theorem CategoryTheory.Limits.limit.hom_ext_iff {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] {X : C} {f f' : X limit F} :
f = f' ∀ (j : J), CategoryStruct.comp f (π F j) = CategoryStruct.comp f' (π F j)
@[simp]
theorem CategoryTheory.Limits.limit.lift_map {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] [HasLimit G] (c : Cone F) (α : F G) :
@[simp]

The isomorphism (in Type) between morphisms from a specified object W to the limit object, and cones with cone point W.

Equations
def CategoryTheory.Limits.limit.homIso' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (W : C) :
ULift.{u₁, v} (W limit F) { p : (j : J) → W F.obj j // ∀ {j j' : J} (f : j j'), CategoryStruct.comp (p j) (F.map f) = p j' }

The isomorphism (in Type) between morphisms from a specified object W to the limit object, and an explicit componentwise description of cones with cone point W.

Equations
theorem CategoryTheory.Limits.limit.lift_extend {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] (c : Cone F) {X : C} (f : X c.pt) :
theorem CategoryTheory.Limits.hasLimit_of_iso {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] (α : F G) :

If a functor F has a limit, so does any naturally isomorphic functor.

@[deprecated CategoryTheory.Limits.hasLimit_of_iso (since := "2025-03-03")]
theorem CategoryTheory.Limits.hasLimitOfIso {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] (α : F G) :

Alias of CategoryTheory.Limits.hasLimit_of_iso.


If a functor F has a limit, so does any naturally isomorphic functor.

If a functor G has the same collection of cones as a functor F which has a limit, then G also has a limit.

The limits of F : J ⥤ C and G : J ⥤ C are isomorphic, if the functors are naturally isomorphic.

Equations
def CategoryTheory.Limits.HasLimit.isoOfEquivalence {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimit F] {G : Functor K C} [HasLimit G] (e : J K) (w : e.functor.comp G F) :

The limits of F : J ⥤ C and G : K ⥤ C are isomorphic, if there is an equivalence e : J ≌ K making the triangle commute up to natural isomorphism.

Equations
def CategoryTheory.Limits.limit.pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (E : Functor K J) [HasLimit (E.comp F)] :

The canonical morphism from the limit of F to the limit of E ⋙ F.

Equations
@[simp]
theorem CategoryTheory.Limits.limit.pre_π {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (E : Functor K J) [HasLimit (E.comp F)] (k : K) :
CategoryStruct.comp (pre F E) (π (E.comp F) k) = π F (E.obj k)
@[simp]
theorem CategoryTheory.Limits.limit.pre_π_assoc {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (E : Functor K J) [HasLimit (E.comp F)] (k : K) {Z : C} (h : F.obj (E.obj k) Z) :
@[simp]
theorem CategoryTheory.Limits.limit.lift_pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (E : Functor K J) [HasLimit (E.comp F)] (c : Cone F) :
@[simp]
theorem CategoryTheory.Limits.limit.pre_pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasLimit F] (E : Functor K J) [HasLimit (E.comp F)] {L : Type u₃} [Category.{v₃, u₃} L] (D : Functor L K) [h : HasLimit (D.comp (E.comp F))] :
CategoryStruct.comp (pre F E) (pre (E.comp F) D) = pre F (D.comp E)

If we have particular limit cones available for E ⋙ F and for F, we obtain a formula for limit.pre F E.

def CategoryTheory.Limits.limit.post {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor J C) [HasLimit F] (G : Functor C D) [HasLimit (F.comp G)] :
G.obj (limit F) limit (F.comp G)

The canonical morphism from G applied to the limit of F to the limit of F ⋙ G.

Equations
Instances For
@[simp]
theorem CategoryTheory.Limits.limit.post_π {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor J C) [HasLimit F] (G : Functor C D) [HasLimit (F.comp G)] (j : J) :
CategoryStruct.comp (post F G) (π (F.comp G) j) = G.map (π F j)
@[simp]
theorem CategoryTheory.Limits.limit.post_π_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor J C) [HasLimit F] (G : Functor C D) [HasLimit (F.comp G)] (j : J) {Z : D} (h : G.obj (F.obj j) Z) :
@[simp]
theorem CategoryTheory.Limits.limit.lift_post {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor J C) [HasLimit F] (G : Functor C D) [HasLimit (F.comp G)] (c : Cone F) :
CategoryStruct.comp (G.map (lift F c)) (post F G) = lift (F.comp G) (G.mapCone c)
@[simp]
theorem CategoryTheory.Limits.limit.post_post {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (F : Functor J C) [HasLimit F] (G : Functor C D) [HasLimit (F.comp G)] {E : Type u''} [Category.{v'', u''} E] (H : Functor D E) [h : HasLimit ((F.comp G).comp H)] :
CategoryStruct.comp (H.map (post F G)) (post (F.comp G) H) = post F (G.comp H)
theorem CategoryTheory.Limits.limit.pre_post {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (E : Functor K J) (F : Functor J C) (G : Functor C D) [HasLimit F] [HasLimit (E.comp F)] [HasLimit (F.comp G)] [h : HasLimit ((E.comp F).comp G)] :
CategoryStruct.comp (G.map (pre F E)) (post (E.comp F) G) = CategoryStruct.comp (post F G) (pre (F.comp G) E)

If a E ⋙ F has a limit, and E is an equivalence, we can construct a limit of F.

limit F is functorial in F, when C has all limits of shape J.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.Limits.lim_map {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] [HasLimitsOfShape J C] {X✝ Y✝ : Functor J C} (α : X✝ Y✝) :
lim.map α = limMap α
theorem CategoryTheory.Limits.limMap_eq {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasLimitsOfShape J C] {G : Functor J C} (α : F G) :
limMap α = lim.map α
theorem CategoryTheory.Limits.limit.map_pre' {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] [HasLimitsOfShape J C] [HasLimitsOfShape K C] (F : Functor J C) {E₁ E₂ : Functor K J} (α : E₁ E₂) :
pre F E₂ = CategoryStruct.comp (pre F E₁) (lim.map (whiskerRight α F))

The isomorphism between morphisms from W to the cone point of the limit cone for F and cones over F with cone point W is natural in F.

Equations
  • One or more equations did not get rendered due to their size.

The constant functor and limit functor are adjoint to each other

Equations
  • One or more equations did not get rendered due to their size.
instance CategoryTheory.Limits.limMap_mono' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimitsOfShape J C] (α : F G) [Mono α] :
instance CategoryTheory.Limits.limMap_mono {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasLimit F] [HasLimit G] (α : F G) [∀ (j : J), Mono (α.app j)] :
noncomputable def CategoryTheory.Limits.coneOfAdj {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {L : Functor (Functor J C) C} (adj : Functor.const J L) (F : Functor J C) :

The limit cone obtained from a right adjoint of the constant functor.

Equations
@[simp]
theorem CategoryTheory.Limits.coneOfAdj_π {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {L : Functor (Functor J C) C} (adj : Functor.const J L) (F : Functor J C) :
(coneOfAdj adj F).π = adj.counit.app F
@[simp]
theorem CategoryTheory.Limits.coneOfAdj_pt {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {L : Functor (Functor J C) C} (adj : Functor.const J L) (F : Functor J C) :
(coneOfAdj adj F).pt = L.obj F

The cones defined by coneOfAdj are limit cones.

Equations
@[simp]
theorem CategoryTheory.Limits.isLimitConeOfAdj_lift {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {L : Functor (Functor J C) C} (adj : Functor.const J L) (F : Functor J C) (s : Cone F) :
(isLimitConeOfAdj adj F).lift s = (adj.homEquiv s.pt F) s.π

We can transport limits of shape J along an equivalence J ≌ J'.

hasLimitsOfSizeShrink.{v u} C tries to obtain HasLimitsOfSize.{v u} C from some other HasLimitsOfSize C.

structure CategoryTheory.Limits.ColimitCocone {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) :
Type (max (max u u₁) v)

ColimitCocone F contains a cocone over F together with the information that it is a colimit.

  • cocone : Cocone F

    The cocone itself

  • isColimit : IsColimit self.cocone

    The proof that it is the colimit cocone

HasColimit F represents the mere existence of a colimit for F.

Instances

C has colimits of shape J if there exists a colimit for every functor F : J ⥤ C.

  • has_colimit (F : Functor J C) : HasColimit F

    All F : J ⥤ C have colimits for a fixed J

Instances
@[reducible, inline]

C has all (small) colimits if it has colimits of every shape that is as big as its hom-sets.

Equations

An arbitrary choice of colimit object of a functor.

Equations
theorem CategoryTheory.Limits.colimit.eqToHom_comp_ι {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] {j j' : J} (hj : j = j') :
CategoryStruct.comp (eqToHom ) (ι F j) = ι F j'
theorem CategoryTheory.Limits.colimit.eqToHom_comp_ι_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] {j j' : J} (hj : j = j') {Z : C} (h : colimit F Z) :
@[simp]
theorem CategoryTheory.Limits.colimit.cocone_ι {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] (j : J) :
(cocone F).ι.app j = ι F j
@[simp]
theorem CategoryTheory.Limits.colimit.w {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] {j j' : J} (f : j j') :
CategoryStruct.comp (F.map f) (ι F j') = ι F j
@[simp]
theorem CategoryTheory.Limits.colimit.w_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] {j j' : J} (f : j j') {Z : C} (h : colimit F Z) :

Evidence that the arbitrary choice of cocone is a colimit cocone.

Equations

The morphism from the colimit object to the cone point of any other cocone.

Equations
@[simp]
theorem CategoryTheory.Limits.colimit.ι_desc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] (c : Cocone F) (j : J) :
CategoryStruct.comp (ι F j) (desc F c) = c.ι.app j

We have lots of lemmas describing how to simplify colimit.ι F j ≫ _, and combined with colimit.ext we rely on these lemmas for many calculations.

However, since Category.assoc is a @[simp] lemma, often expressions are right associated, and it's hard to apply these lemmas about colimit.ι.

We thus use reassoc to define additional @[simp] lemmas, with an arbitrary extra morphism. (see Tactic/reassoc_axiom.lean)

@[simp]
theorem CategoryTheory.Limits.colimit.ι_desc_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] (c : Cocone F) (j : J) {Z : C} (h : c.pt Z) :

Functoriality of colimits.

Usually this morphism should be accessed through colim.map, but may be needed separately when you have specified colimits for the source and target functors, but not necessarily for all functors of shape J.

Equations
Instances For
@[simp]

The cocone morphism from the arbitrary choice of colimit cocone to any cocone.

Equations
theorem CategoryTheory.Limits.colimit.hom_ext {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] {X : C} {f f' : colimit F X} (w : ∀ (j : J), CategoryStruct.comp (ι F j) f = CategoryStruct.comp (ι F j) f') :
f = f'
theorem CategoryTheory.Limits.colimit.hom_ext_iff {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimit F] {X : C} {f f' : colimit F X} :
f = f' ∀ (j : J), CategoryStruct.comp (ι F j) f = CategoryStruct.comp (ι F j) f'

The isomorphism (in Type) between morphisms from the colimit object to a specified object W, and cocones with cone point W.

Equations
def CategoryTheory.Limits.colimit.homIso' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (W : C) :
ULift.{u₁, v} (colimit F W) { p : (j : J) → F.obj j W // ∀ {j j' : J} (f : j j'), CategoryStruct.comp (F.map f) (p j') = p j }

The isomorphism (in Type) between morphisms from the colimit object to a specified object W, and an explicit componentwise description of cocones with cone point W.

Equations
theorem CategoryTheory.Limits.colimit.desc_extend {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (c : Cocone F) {X : C} (f : c.pt X) :

If F has a colimit, so does any naturally isomorphic functor.

@[deprecated CategoryTheory.Limits.hasColimit_of_iso (since := "2025-03-03")]

Alias of CategoryTheory.Limits.hasColimit_of_iso.


If F has a colimit, so does any naturally isomorphic functor.

If a functor G has the same collection of cocones as a functor F which has a colimit, then G also has a colimit.

The colimits of F : J ⥤ C and G : J ⥤ C are isomorphic, if the functors are naturally isomorphic.

Equations

The colimits of F : J ⥤ C and G : K ⥤ C are isomorphic, if there is an equivalence e : J ≌ K making the triangle commute up to natural isomorphism.

Equations
@[simp]
theorem CategoryTheory.Limits.colimit.ι_pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] (k : K) :
CategoryStruct.comp (ι (E.comp F) k) (pre F E) = ι F (E.obj k)
@[simp]
theorem CategoryTheory.Limits.colimit.ι_pre_assoc {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] (k : K) {Z : C} (h : colimit F Z) :
@[simp]
theorem CategoryTheory.Limits.colimit.ι_inv_pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] [IsIso (pre F E)] (k : K) :
CategoryStruct.comp (ι F (E.obj k)) (inv (pre F E)) = ι (E.comp F) k
@[simp]
theorem CategoryTheory.Limits.colimit.ι_inv_pre_assoc {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] [IsIso (pre F E)] (k : K) {Z : C} (h : colimit (E.comp F) Z) :
@[simp]
theorem CategoryTheory.Limits.colimit.pre_desc {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] (c : Cocone F) :
@[simp]
@[simp]
theorem CategoryTheory.Limits.colimit.pre_pre {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] (F : Functor J C) [HasColimit F] (E : Functor K J) [HasColimit (E.comp F)] {L : Type u₃} [Category.{v₃, u₃} L] (D : Functor L K) [h : HasColimit (D.comp (E.comp F))] :
CategoryStruct.comp (pre (E.comp F) D) (pre F E) = pre F (D.comp E)

If we have particular colimit cocones available for E ⋙ F and for F, we obtain a formula for colimit.pre F E.

The canonical morphism from G applied to the colimit of F ⋙ G to G applied to the colimit of F.

Equations
Instances For
@[simp]
theorem CategoryTheory.Limits.colimit.ι_post {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) {D : Type u'} [Category.{v', u'} D] [HasColimit F] (G : Functor C D) [HasColimit (F.comp G)] (j : J) :
CategoryStruct.comp (ι (F.comp G) j) (post F G) = G.map (ι F j)
@[simp]
theorem CategoryTheory.Limits.colimit.ι_post_assoc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) {D : Type u'} [Category.{v', u'} D] [HasColimit F] (G : Functor C D) [HasColimit (F.comp G)] (j : J) {Z : D} (h : G.obj (colimit F) Z) :
@[simp]
theorem CategoryTheory.Limits.colimit.post_desc {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) {D : Type u'} [Category.{v', u'} D] [HasColimit F] (G : Functor C D) [HasColimit (F.comp G)] (c : Cocone F) :
CategoryStruct.comp (post F G) (G.map (desc F c)) = desc (F.comp G) (G.mapCocone c)
@[simp]
theorem CategoryTheory.Limits.colimit.post_post {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] (F : Functor J C) {D : Type u'} [Category.{v', u'} D] [HasColimit F] (G : Functor C D) [HasColimit (F.comp G)] {E : Type u''} [Category.{v'', u''} E] (H : Functor D E) [h : HasColimit ((F.comp G).comp H)] :
CategoryStruct.comp (post (F.comp G) H) (H.map (post F G)) = post F (G.comp H)
theorem CategoryTheory.Limits.colimit.pre_post {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] (E : Functor K J) (F : Functor J C) (G : Functor C D) [HasColimit F] [HasColimit (E.comp F)] [HasColimit (F.comp G)] [h : HasColimit ((E.comp F).comp G)] :
CategoryStruct.comp (post (E.comp F) G) (G.map (pre F E)) = CategoryStruct.comp (pre (F.comp G) E) (post F G)

If a E ⋙ F has a colimit, and E is an equivalence, we can construct a colimit of F.

colimit F is functorial in F, when C has all colimits of shape J.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.Limits.colim_map {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] [HasColimitsOfShape J C] {X✝ Y✝ : Functor J C} (α : X✝ Y✝) :
theorem CategoryTheory.Limits.colimMap_eq {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimitsOfShape J C] {G : Functor J C} (α : F G) :
theorem CategoryTheory.Limits.colimit.ι_map {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F : Functor J C} [HasColimitsOfShape J C] {G : Functor J C} (α : F G) (j : J) :
@[simp]
@[simp]
theorem CategoryTheory.Limits.colimit.pre_map' {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] {C : Type u} [Category.{v, u} C] [HasColimitsOfShape J C] [HasColimitsOfShape K C] (F : Functor J C) {E₁ E₂ : Functor K J} (α : E₁ E₂) :
pre F E₁ = CategoryStruct.comp (colim.map (whiskerRight α F)) (pre F E₂)

The isomorphism between morphisms from the cone point of the colimit cocone for F to W and cocones over F with cone point W is natural in F.

Equations
  • One or more equations did not get rendered due to their size.

The colimit functor and constant functor are adjoint to each other

Equations
  • One or more equations did not get rendered due to their size.
instance CategoryTheory.Limits.colimMap_epi' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasColimitsOfShape J C] (α : F G) [Epi α] :
instance CategoryTheory.Limits.colimMap_epi {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} [HasColimit F] [HasColimit G] (α : F G) [∀ (j : J), Epi (α.app j)] :

We can transport colimits of shape J along an equivalence J ≌ J'.

hasColimitsOfSizeShrink.{v u} C tries to obtain HasColimitsOfSize.{v u} C from some other HasColimitsOfSize C.

If t : Cone F is a limit cone, then t.op : Cocone F.op is a colimit cocone.

Equations

If t : Cocone F is a colimit cocone, then t.op : Cone F.op is a limit cone.

Equations

If t : Cone F.op is a limit cone, then t.unop : Cocone F is a colimit cocone.

Equations

If t : Cocone F.op is a colimit cocone, then t.unop : Cone F is a limit cone.

Equations

If t.op : Cocone F.op is a colimit cocone, then t : Cone F is a limit cone.

Equations

If t.op : Cone F.op is a limit cone, then t : Cocone F is a colimit cocone.

Equations

If t.unop : Cocone F is a colimit cocone, then t : Cone F.op is a limit cone.

Equations

If t.unop : Cone F is a limit cone, then t : Cocone F.op is a colimit cocone.

Equations