Unramified algebras over fields #
Main results #
Let K
be a field, A
be a K
-algebra and L
be a field extension of K
.
Algebra.FormallyUnramified.bijective_of_isAlgClosed_of_localRing
: IfA
isK
-unramified andK
is alg-closed, thenK = A
.Algebra.FormallyUnramified.isReduced_of_field
: IfA
isK
-unramified thenA
is reduced.Algebra.FormallyUnramified.iff_isSeparable
:L
is unramified overK
iffL
is separable overK
.
References #
- [B. Iversen, Generic Local Structure of the Morphisms in Commutative Algebra][iversen]
theorem
Algebra.FormallyUnramified.of_isSeparable
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
:
theorem
Algebra.FormallyUnramified.bijective_of_isAlgClosed_of_localRing
(K : Type u)
(A : Type u)
[Field K]
[CommRing A]
[Algebra K A]
[Algebra.FormallyUnramified K A]
[Algebra.EssFiniteType K A]
[IsAlgClosed K]
[LocalRing A]
:
Function.Bijective ⇑(algebraMap K A)
theorem
Algebra.FormallyUnramified.isField_of_isAlgClosed_of_localRing
(K : Type u)
(A : Type u)
[Field K]
[CommRing A]
[Algebra K A]
[Algebra.FormallyUnramified K A]
[Algebra.EssFiniteType K A]
[IsAlgClosed K]
[LocalRing A]
:
IsField A
theorem
Algebra.FormallyUnramified.isReduced_of_field
(K : Type u)
(A : Type u)
[Field K]
[CommRing A]
[Algebra K A]
[Algebra.FormallyUnramified K A]
[Algebra.EssFiniteType K A]
:
theorem
Algebra.FormallyUnramified.range_eq_top_of_isPurelyInseparable
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.FormallyUnramified K L]
[Algebra.EssFiniteType K L]
[IsPurelyInseparable K L]
:
(algebraMap K L).range = ⊤
theorem
Algebra.FormallyUnramified.isSeparable
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.FormallyUnramified K L]
[Algebra.EssFiniteType K L]
:
theorem
Algebra.FormallyUnramified.iff_isSeparable
(K : Type u)
[Field K]
(L : Type u)
[Field L]
[Algebra K L]
[Algebra.EssFiniteType K L]
: