The residue field of a prime ideal #
We define Ideal.ResidueField I to be the residue field of the local ring Localization.Prime I,
and provide an IsFractionRing (R ⧸ I) I.ResidueField instance.
@[reducible, inline]
The residue field at a prime ideal, defined to be the residue field of the local ring
Localization.Prime I.
We also provide an IsFractionRing (R ⧸ I) I.ResidueField instance.
Equations
Instances For
@[reducible, inline]
noncomputable abbrev
Ideal.ResidueField.map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
(I : Ideal R)
[I.IsPrime]
(J : Ideal S)
[J.IsPrime]
(f : R →+* S)
(hf : I = comap f J)
:
If I = f⁻¹(J), then there is a canonical embedding κ(I) ↪ κ(J).
Equations
- Ideal.ResidueField.map I J f hf = IsLocalRing.ResidueField.map (Localization.localRingHom I J f hf)
Instances For
noncomputable def
Ideal.ResidueField.mapₐ
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal A)
[I.IsPrime]
(J : Ideal B)
[J.IsPrime]
(f : A →ₐ[R] B)
(hf : I = comap f.toRingHom J)
:
If I = f⁻¹(J), then there is a canonical embedding κ(I) ↪ κ(J).
Equations
- Ideal.ResidueField.mapₐ I J f hf = { toRingHom := Ideal.ResidueField.map I J (↑f) hf, commutes' := ⋯ }
Instances For
@[simp]
theorem
Ideal.algebraMap_residueField_eq_zero
{R : Type u_1}
[CommRing R]
{I : Ideal R}
[I.IsPrime]
{x : R}
:
@[simp]
noncomputable instance
instAlgebraQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
Algebra (R ⧸ I) I.ResidueField
Equations
instance
instIsScalarTowerQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
IsScalarTower R (R ⧸ I) I.ResidueField
@[simp]
theorem
Ideal.algebraMap_quotient_residueField_mk
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(x : R)
:
@[deprecated Ideal.algebraMap_quotient_residueField_mk (since := "2025-12-02")]
theorem
Ideal.injective_algebraMap_quotient_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
Function.Injective ⇑(algebraMap (R ⧸ I) I.ResidueField)
instance
instIsFractionRingQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
IsFractionRing (R ⧸ I) I.ResidueField
theorem
Ideal.bijective_algebraMap_quotient_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsMaximal]
:
Function.Bijective ⇑(algebraMap (R ⧸ I) I.ResidueField)
theorem
Ideal.surjectiveOnStalks_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
noncomputable def
Ideal.ResidueField.lift
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
(I : Ideal R)
[I.IsPrime]
(f : R →+* S)
(hf₁ : I ≤ RingHom.ker f)
(hf₂ : I.primeCompl ≤ Submonoid.comap f (IsUnit.submonoid S))
:
If f sends I to 0 and Iᶜ to units, then f lifts to κ(I).
Equations
- Ideal.ResidueField.lift I f hf₁ hf₂ = IsLocalization.lift ⋯
Instances For
@[simp]
theorem
Ideal.ResidueField.lift_algebraMap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
(I : Ideal R)
[I.IsPrime]
(f : R →+* S)
(hf₁ : I ≤ RingHom.ker f)
(hf₂ : I.primeCompl ≤ Submonoid.comap f (IsUnit.submonoid S))
(r : R)
:
noncomputable def
Ideal.ResidueField.liftₐ
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal A)
[I.IsPrime]
(f : A →ₐ[R] B)
(hf₁ : I ≤ RingHom.ker f)
(hf₂ : I.primeCompl ≤ Submonoid.comap f (IsUnit.submonoid B))
:
If f sends I to 0 and Iᶜ to units, then f lifts to κ(I).
Equations
- Ideal.ResidueField.liftₐ I f hf₁ hf₂ = { toRingHom := Ideal.ResidueField.lift I f.toRingHom hf₁ hf₂, commutes' := ⋯ }
Instances For
@[simp]
theorem
Ideal.ResidueField.liftₐ_algebraMap
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal A)
[I.IsPrime]
(f : A →ₐ[R] B)
(hf₁ : I ≤ RingHom.ker f)
(hf₂ : I.primeCompl ≤ Submonoid.comap f (IsUnit.submonoid B))
(r : A)
:
@[simp]
theorem
Ideal.ResidueField.liftₐ_comp_toAlgHom
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
(I : Ideal A)
[I.IsPrime]
(f : A →ₐ[R] B)
(hf₁ : I ≤ RingHom.ker f)
(hf₂ : I.primeCompl ≤ Submonoid.comap f (IsUnit.submonoid B))
:
theorem
Ideal.ResidueField.ringHom_ext
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{I : Ideal R}
[I.IsPrime]
{f g : I.ResidueField →+* S}
(H : f.comp (algebraMap R I.ResidueField) = g.comp (algebraMap R I.ResidueField))
:
theorem
Ideal.ResidueField.ringHom_ext_iff
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{I : Ideal R}
[I.IsPrime]
{f g : I.ResidueField →+* S}
:
theorem
Ideal.ResidueField.algHom_ext
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
{I : Ideal A}
[I.IsPrime]
{f g : I.ResidueField →ₐ[R] B}
(H : f.comp (IsScalarTower.toAlgHom R A I.ResidueField) = g.comp (IsScalarTower.toAlgHom R A I.ResidueField))
:
theorem
Ideal.ResidueField.algHom_ext_iff
{R : Type u_1}
{A : Type u_3}
{B : Type u_4}
[CommRing R]
[CommRing A]
[CommRing B]
[Algebra R A]
[Algebra R B]
{I : Ideal A}
[I.IsPrime]
{f g : I.ResidueField →ₐ[R] B}
:
f = g ↔ f.comp (IsScalarTower.toAlgHom R A I.ResidueField) = g.comp (IsScalarTower.toAlgHom R A I.ResidueField)