Documentation

Mathlib.RingTheory.Coalgebra.Equiv

Isomorphisms of R-coalgebras #

This file defines bundled isomorphisms of R-coalgebras. We simply mimic the early parts of Mathlib/Algebra/Module/Equiv.lean.

Main definitions #

Notations #

structure CoalgEquiv (R : Type u_5) [CommSemiring R] (A : Type u_6) (B : Type u_7) [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends A →ₗc[R] B, A ≃ₗ[R] B :
Type (max u_6 u_7)

An equivalence of coalgebras is an invertible coalgebra homomorphism.

Instances For

    An equivalence of coalgebras is an invertible coalgebra homomorphism.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      class CoalgEquivClass (F : Type u_5) (R : outParam (Type u_6)) (A : outParam (Type u_7)) (B : outParam (Type u_8)) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] extends CoalgHomClass F R A B, SemilinearEquivClass F (RingHom.id R) A B :

      CoalgEquivClass F R A B asserts F is a type of bundled coalgebra equivalences from A to B.

      Instances
        def CoalgEquivClass.toCoalgEquiv {F : Type u_5} {R : Type u_6} {A : Type u_7} {B : Type u_8} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [CoalgEquivClass F R A B] (f : F) :

        Reinterpret an element of a type of coalgebra equivalences as a coalgebra equivalence.

        Equations
        • f = { toCoalgHom := f, invFun := (↑f).invFun, left_inv := , right_inv := }
        Instances For
          instance CoalgEquivClass.instCoeToCoalgEquiv {F : Type u_5} {R : Type u_6} {A : Type u_7} {B : Type u_8} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [CoalgEquivClass F R A B] :

          Reinterpret an element of a type of coalgebra equivalences as a coalgebra equivalence.

          Equations
          def CoalgEquiv.toEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
          (A ≃ₗc[R] B)A B

          The equivalence of types underlying a coalgebra equivalence.

          Equations
          • f.toEquiv = f.toLinearEquiv.toEquiv
          Instances For
            @[simp]
            theorem CoalgEquiv.toEquiv_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₗc[R] B} :
            e₁.toEquiv = e₂.toEquiv e₁ = e₂
            instance CoalgEquiv.instEquivLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
            EquivLike (A ≃ₗc[R] B) A B
            Equations
            instance CoalgEquiv.instFunLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
            FunLike (A ≃ₗc[R] B) A B
            Equations
            @[simp]
            theorem CoalgEquiv.toCoalgHom_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₗc[R] B} :
            e₁ = e₂ e₁ = e₂
            @[simp]
            theorem CoalgEquiv.coe_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} {h : ∀ (x y : A), f (x + y) = f x + f y} {h₀ : ∀ (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h }.toFun x} {h₁ : CoalgebraStruct.counit ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ } = CoalgebraStruct.counit} {h₂ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := h₀ } { toFun := f, map_add' := h, map_smul' := h₀ } ∘ₗ CoalgebraStruct.comul = CoalgebraStruct.comul ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ }} {h₃ : BA} {h₄ : Function.LeftInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₅ : Function.RightInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} :
            { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ } = f
            def CoalgEquiv.Simps.apply {R : Type u_5} [CommSemiring R] {α : Type u_6} {β : Type u_7} [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α ≃ₗc[R] β) :
            αβ

            See Note [custom simps projection]

            Equations
            Instances For
              @[simp]
              theorem CoalgEquiv.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
              e = e
              @[simp]
              theorem CoalgEquiv.toLinearEquiv_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :
              f.toLinearEquiv = f
              @[simp]
              theorem CoalgEquiv.toCoalgHom_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :
              f.toCoalgHom = f
              @[simp]
              theorem CoalgEquiv.coe_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
              e = e
              @[simp]
              theorem CoalgEquiv.coe_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
              e = e
              theorem CoalgEquiv.toLinearEquiv_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
              e = e
              theorem CoalgEquiv.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₗc[R] B} (h : ∀ (x : A), e x = e' x) :
              e = e'
              theorem CoalgEquiv.congr_arg {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₗc[R] B} {x x' : A} :
              x = x'e x = e x'
              theorem CoalgEquiv.congr_fun {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₗc[R] B} (h : e = e') (x : A) :
              e x = e' x
              def CoalgEquiv.refl (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :

              The identity map is a coalgebra equivalence.

              Equations
              Instances For
                @[simp]
                theorem CoalgEquiv.refl_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (a : A) :
                (CoalgEquiv.refl R A) a = a
                @[simp]
                theorem CoalgEquiv.refl_invFun (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (a✝ : A) :
                (CoalgEquiv.refl R A).invFun a✝ = a✝
                @[simp]
                def CoalgEquiv.symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :

                Coalgebra equivalences are symmetric.

                Equations
                • e.symm = { toLinearMap := (↑e).symm, counit_comp := , map_comp_comul := , invFun := (↑e).symm.invFun, left_inv := , right_inv := }
                Instances For
                  @[simp]
                  theorem CoalgEquiv.symm_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e.symm = (↑e).symm
                  theorem CoalgEquiv.coe_symm_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  (↑e).symm = e.symm
                  @[simp]
                  theorem CoalgEquiv.symm_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e.symm = (↑e).symm
                  @[simp]
                  theorem CoalgEquiv.symm_apply_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) (x : A) :
                  e.symm (e x) = x
                  @[simp]
                  theorem CoalgEquiv.apply_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) (x : B) :
                  e (e.symm x) = x
                  def CoalgEquiv.Simps.symm_apply {R : Type u_5} [CommSemiring R] {A : Type u_6} {B : Type u_7} [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  BA

                  See Note [custom simps projection]

                  Equations
                  Instances For
                    @[simp]
                    theorem CoalgEquiv.invFun_eq_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                    e.invFun = e.symm
                    @[simp]
                    theorem CoalgEquiv.coe_toEquiv_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                    e.toEquiv.symm = e.symm
                    def CoalgEquiv.trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) :

                    Coalgebra equivalences are transitive.

                    Equations
                    • e₁₂.trans e₂₃ = { toCoalgHom := (↑e₂₃).comp e₁₂, invFun := (e₁₂.toLinearEquiv.trans e₂₃.toLinearEquiv).invFun, left_inv := , right_inv := }
                    Instances For
                      @[simp]
                      theorem CoalgEquiv.trans_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) (a✝ : A) :
                      (e₁₂.trans e₂₃) a✝ = e₂₃ (e₁₂ a✝)
                      @[simp]
                      theorem CoalgEquiv.trans_invFun {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) (a✝ : C) :
                      (e₁₂.trans e₂₃).invFun a✝ = (↑e₁₂).symm ((↑e₂₃).symm a✝)
                      theorem CoalgEquiv.trans_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                      (e₁₂.trans e₂₃) = e₁₂ ≪≫ₗ e₂₃
                      @[simp]
                      theorem CoalgEquiv.trans_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                      (e₁₂.trans e₂₃) = e₂₃.comp e₁₂
                      @[simp]
                      theorem CoalgEquiv.coe_toEquiv_trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                      (↑e₁₂).trans e₂₃ = (e₁₂.trans e₂₃)
                      @[reducible]
                      def CoalgEquiv.toCoalgebra {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :

                      Let A be an R-coalgebra and let B be an R-module with a CoalgebraStruct. A linear equivalence A ≃ₗ[R] B that respects the CoalgebraStructs defines an R-coalgebra structure on B.

                      Equations
                      Instances For