Documentation

Mathlib.RingTheory.Coalgebra.Equiv

Isomorphisms of R-coalgebras #

This file defines bundled isomorphisms of R-coalgebras. We simply mimic the early parts of Mathlib/Algebra/Module/Equiv.lean.

Main definitions #

Notations #

structure CoalgEquiv (R : Type u_5) [CommSemiring R] (A : Type u_6) (B : Type u_7) [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends CoalgHom , LinearEquiv , LinearMap , AddEquiv , Equiv , AddHom , MulActionHom :
Type (max u_6 u_7)

An equivalence of coalgebras is an invertible coalgebra homomorphism.

    Instances For

      An equivalence of coalgebras is an invertible coalgebra homomorphism.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        CoalgEquivClass F R A B asserts F is a type of bundled coalgebra equivalences from A to B.

          Instances
            def CoalgEquivClass.toCoalgEquiv {F : Type u_5} {R : Type u_6} {A : Type u_7} {B : Type u_8} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [CoalgEquivClass F R A B] (f : F) :

            Reinterpret an element of a type of coalgebra equivalences as a coalgebra equivalence.

            Equations
            • f = { toCoalgHom := f, invFun := (↑f).invFun, left_inv := , right_inv := }
            Instances For
              instance CoalgEquivClass.instCoeToCoalgEquiv {F : Type u_5} {R : Type u_6} {A : Type u_7} {B : Type u_8} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [CoalgEquivClass F R A B] :

              Reinterpret an element of a type of coalgebra equivalences as a coalgebra equivalence.

              Equations
              • CoalgEquivClass.instCoeToCoalgEquiv = { coe := fun (f : F) => f }
              def CoalgEquiv.toEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
              (A ≃ₗc[R] B)A B

              The equivalence of types underlying a coalgebra equivalence.

              Equations
              • f.toEquiv = f.toLinearEquiv.toEquiv
              Instances For
                theorem CoalgEquiv.toEquiv_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                Function.Injective CoalgEquiv.toEquiv
                @[simp]
                theorem CoalgEquiv.toEquiv_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ : A ≃ₗc[R] B} {e₂ : A ≃ₗc[R] B} :
                e₁.toEquiv = e₂.toEquiv e₁ = e₂
                theorem CoalgEquiv.toCoalgHom_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                Function.Injective CoalgEquiv.toCoalgHom
                instance CoalgEquiv.instEquivLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                EquivLike (A ≃ₗc[R] B) A B
                Equations
                • CoalgEquiv.instEquivLike = { coe := fun (e : A ≃ₗc[R] B) => e.toFun, inv := CoalgEquiv.invFun, left_inv := , right_inv := , coe_injective' := }
                instance CoalgEquiv.instFunLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                FunLike (A ≃ₗc[R] B) A B
                Equations
                • CoalgEquiv.instFunLike = { coe := DFunLike.coe, coe_injective' := }
                instance CoalgEquiv.instCoalgEquivClass {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                Equations
                • =
                @[simp]
                theorem CoalgEquiv.toCoalgHom_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ : A ≃ₗc[R] B} {e₂ : A ≃ₗc[R] B} :
                e₁ = e₂ e₁ = e₂
                @[simp]
                theorem CoalgEquiv.coe_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} {h : ∀ (x y : A), f (x + y) = f x + f y} {h₀ : ∀ (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h }.toFun x} {h₁ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ } = Coalgebra.counit} {h₂ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := h₀ } { toFun := f, map_add' := h, map_smul' := h₀ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ }} {h₃ : BA} {h₄ : Function.LeftInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₅ : Function.RightInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} :
                { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ } = f
                def CoalgEquiv.Simps.apply {R : Type u_5} [CommSemiring R] {α : Type u_6} {β : Type u_7} [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α ≃ₗc[R] β) :
                αβ

                See Note [custom simps projection]

                Equations
                Instances For
                  @[simp]
                  theorem CoalgEquiv.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e = e
                  @[simp]
                  theorem CoalgEquiv.toLinearEquiv_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :
                  f.toLinearEquiv = f
                  @[simp]
                  theorem CoalgEquiv.toCoalgHom_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :
                  f.toCoalgHom = f
                  @[simp]
                  theorem CoalgEquiv.coe_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e = e
                  @[simp]
                  theorem CoalgEquiv.coe_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e = e
                  theorem CoalgEquiv.toLinearEquiv_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                  e = e
                  theorem CoalgEquiv.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₗc[R] B} {e' : A ≃ₗc[R] B} (h : ∀ (x : A), e x = e' x) :
                  e = e'
                  theorem CoalgEquiv.congr_arg {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₗc[R] B} {x : A} {x' : A} :
                  x = x'e x = e x'
                  theorem CoalgEquiv.congr_fun {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₗc[R] B} {e' : A ≃ₗc[R] B} (h : e = e') (x : A) :
                  e x = e' x
                  def CoalgEquiv.refl (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :

                  The identity map is a coalgebra equivalence.

                  Equations
                  Instances For
                    @[simp]
                    theorem CoalgEquiv.refl_invFun (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                    ∀ (a : A), (CoalgEquiv.refl R A).invFun a = a
                    @[simp]
                    theorem CoalgEquiv.refl_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (a : A) :
                    (CoalgEquiv.refl R A) a = a
                    @[simp]
                    def CoalgEquiv.symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :

                    Coalgebra equivalences are symmetric.

                    Equations
                    • e.symm = { toLinearMap := (↑e).symm, counit_comp := , map_comp_comul := , invFun := (↑e).symm.invFun, left_inv := , right_inv := }
                    Instances For
                      @[simp]
                      theorem CoalgEquiv.symm_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                      e.symm = (↑e).symm
                      theorem CoalgEquiv.coe_symm_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                      (↑e).symm = e.symm
                      @[simp]
                      theorem CoalgEquiv.symm_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                      e.symm = (↑e).symm
                      @[simp]
                      theorem CoalgEquiv.symm_apply_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) (x : A) :
                      e.symm (e x) = x
                      @[simp]
                      theorem CoalgEquiv.apply_symm_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) (x : B) :
                      e (e.symm x) = x
                      def CoalgEquiv.Simps.symm_apply {R : Type u_5} [CommSemiring R] {A : Type u_6} {B : Type u_7} [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                      BA

                      See Note [custom simps projection]

                      Equations
                      Instances For
                        @[simp]
                        theorem CoalgEquiv.invFun_eq_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                        e.invFun = e.symm
                        @[simp]
                        theorem CoalgEquiv.coe_toEquiv_symm {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₗc[R] B) :
                        e.toEquiv.symm = e.symm
                        def CoalgEquiv.trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) :

                        Coalgebra equivalences are transitive.

                        Equations
                        • e₁₂.trans e₂₃ = { toCoalgHom := (↑e₂₃).comp e₁₂, invFun := (e₁₂.toLinearEquiv.trans e₂₃.toLinearEquiv).invFun, left_inv := , right_inv := }
                        Instances For
                          @[simp]
                          theorem CoalgEquiv.trans_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) :
                          ∀ (a : A), (e₁₂.trans e₂₃) a = e₂₃ (e₁₂ a)
                          @[simp]
                          theorem CoalgEquiv.trans_invFun {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₗc[R] B) (e₂₃ : B ≃ₗc[R] C) :
                          ∀ (a : C), (e₁₂.trans e₂₃).invFun a = (↑e₁₂).symm ((↑e₂₃).symm a)
                          theorem CoalgEquiv.trans_toLinearEquiv {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                          (e₁₂.trans e₂₃) = e₁₂ ≪≫ₗ e₂₃
                          @[simp]
                          theorem CoalgEquiv.trans_toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                          (e₁₂.trans e₂₃) = e₂₃.comp e₁₂
                          @[simp]
                          theorem CoalgEquiv.coe_toEquiv_trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [Module R A] [Module R B] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₗc[R] B} {e₂₃ : B ≃ₗc[R] C} :
                          (↑e₁₂).trans e₂₃ = (e₁₂.trans e₂₃)
                          @[reducible]
                          def CoalgEquiv.toCoalgebra {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R B] (f : A ≃ₗc[R] B) :

                          Let A be an R-coalgebra and let B be an R-module with a CoalgebraStruct. A linear equivalence A ≃ₗ[R] B that respects the CoalgebraStructs defines an R-coalgebra structure on B.

                          Equations
                          Instances For