Documentation

Mathlib.RingTheory.Coalgebra.Hom

Homomorphisms of R-coalgebras #

This file defines bundled homomorphisms of R-coalgebras. We largely mimic Mathlib/Algebra/Algebra/Hom.lean.

Main definitions #

Notations #

structure CoalgHom (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends LinearMap , AddHom , MulActionHom :
Type (max u_2 u_3)

Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

    Instances For
      theorem CoalgHom.counit_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (self : A →ₗc[R] B) :
      Coalgebra.counit ∘ₗ self.toLinearMap = Coalgebra.counit
      theorem CoalgHom.map_comp_comul {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (self : A →ₗc[R] B) :
      TensorProduct.map self.toLinearMap self.toLinearMap ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ self.toLinearMap

      Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

      Equations
      Instances For

        Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          CoalgHomClass F R A B asserts F is a type of bundled coalgebra homomorphisms from A to B.

            Instances
              @[simp]
              theorem CoalgHomClass.counit_comp {F : Type u_1} {R : outParam (Type u_2)} {A : outParam (Type u_3)} {B : outParam (Type u_4)} :
              ∀ {inst : CommSemiring R} {inst_1 : AddCommMonoid A} {inst_2 : Module R A} {inst_3 : AddCommMonoid B} {inst_4 : Module R B} {inst_5 : CoalgebraStruct R A} {inst_6 : CoalgebraStruct R B} {inst_7 : FunLike F A B} [self : CoalgHomClass F R A B] (f : F), Coalgebra.counit ∘ₗ f = Coalgebra.counit
              @[simp]
              theorem CoalgHomClass.map_comp_comul {F : Type u_1} {R : outParam (Type u_2)} {A : outParam (Type u_3)} {B : outParam (Type u_4)} :
              ∀ {inst : CommSemiring R} {inst_1 : AddCommMonoid A} {inst_2 : Module R A} {inst_3 : AddCommMonoid B} {inst_4 : Module R B} {inst_5 : CoalgebraStruct R A} {inst_6 : CoalgebraStruct R B} {inst_7 : FunLike F A B} [self : CoalgHomClass F R A B] (f : F), TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f
              def CoalgHomClass.toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) :

              Turn an element of a type F satisfying CoalgHomClass F R A B into an actual CoalgHom. This is declared as the default coercion from F to A →ₗc[R] B.

              Equations
              • f = { toFun := f, map_add' := , map_smul' := , counit_comp := , map_comp_comul := }
              Instances For
                instance CoalgHomClass.instCoeToCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] :
                Equations
                • CoalgHomClass.instCoeToCoalgHom = { coe := CoalgHomClass.toCoalgHom }
                @[simp]
                theorem CoalgHomClass.counit_comp_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) (x : A) :
                Coalgebra.counit (f x) = Coalgebra.counit x
                @[simp]
                theorem CoalgHomClass.map_comp_comul_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) (x : A) :
                (TensorProduct.map f f) (Coalgebra.comul x) = Coalgebra.comul (f x)
                instance CoalgHom.funLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                FunLike (A →ₗc[R] B) A B
                Equations
                • CoalgHom.funLike = { coe := fun (f : A →ₗc[R] B) => f.toFun, coe_injective' := }
                instance CoalgHom.coalgHomClass {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                Equations
                • =
                def CoalgHom.Simps.apply {R : Type u_6} {α : Type u_7} {β : Type u_8} [CommSemiring R] [AddCommMonoid α] [Module R α] [AddCommMonoid β] [Module R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α →ₗc[R] β) :
                αβ

                See Note [custom simps projection]

                Equations
                Instances For
                  @[simp]
                  theorem CoalgHom.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {F : Type u_6} [FunLike F A B] [CoalgHomClass F R A B] (f : F) :
                  f = f
                  @[simp]
                  theorem CoalgHom.coe_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗ[R] B} (h : Coalgebra.counit ∘ₗ f = Coalgebra.counit) (h₁ : TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f) :
                  { toLinearMap := f, counit_comp := h, map_comp_comul := h₁ } = f
                  theorem CoalgHom.coe_mks {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} (h₁ : ∀ (x y : A), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : A), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ } = Coalgebra.counit) (h₄ : TensorProduct.map { toFun := f, map_add' := h₁, map_smul' := h₂ } { toFun := f, map_add' := h₁, map_smul' := h₂ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ }) :
                  { toFun := f, map_add' := h₁, map_smul' := h₂, counit_comp := h₃, map_comp_comul := h₄ } = f
                  @[simp]
                  theorem CoalgHom.coe_linearMap_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗ[R] B} (h : Coalgebra.counit ∘ₗ f = Coalgebra.counit) (h₁ : TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f) :
                  { toLinearMap := f, counit_comp := h, map_comp_comul := h₁ } = f
                  @[simp]
                  theorem CoalgHom.toLinearMap_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
                  f.toLinearMap = f
                  @[simp]
                  theorem CoalgHom.coe_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
                  f = f
                  theorem CoalgHom.coe_toAddMonoidHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
                  f = f
                  theorem CoalgHom.coe_fn_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                  Function.Injective DFunLike.coe
                  theorem CoalgHom.coe_fn_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ : A →ₗc[R] B} {φ₂ : A →ₗc[R] B} :
                  φ₁ = φ₂ φ₁ = φ₂
                  theorem CoalgHom.coe_linearMap_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                  Function.Injective fun (x : A →ₗc[R] B) => x
                  theorem CoalgHom.coe_addMonoidHom_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                  Function.Injective AddMonoidHomClass.toAddMonoidHom
                  theorem CoalgHom.congr_fun {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ : A →ₗc[R] B} {φ₂ : A →ₗc[R] B} (H : φ₁ = φ₂) (x : A) :
                  φ₁ x = φ₂ x
                  theorem CoalgHom.congr_arg {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) {x : A} {y : A} (h : x = y) :
                  φ x = φ y
                  theorem CoalgHom.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ : A →ₗc[R] B} {φ₂ : A →ₗc[R] B} (H : ∀ (x : A), φ₁ x = φ₂ x) :
                  φ₁ = φ₂
                  theorem CoalgHom.ext_of_ring {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] {f : R →ₗc[R] A} {g : R →ₗc[R] A} (h : f 1 = g 1) :
                  f = g
                  @[simp]
                  theorem CoalgHom.mk_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗc[R] B} (h₁ : ∀ (x y : A), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : A), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ } = Coalgebra.counit) (h₄ : TensorProduct.map { toFun := f, map_add' := h₁, map_smul' := h₂ } { toFun := f, map_add' := h₁, map_smul' := h₂ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ }) :
                  { toFun := f, map_add' := h₁, map_smul' := h₂, counit_comp := h₃, map_comp_comul := h₄ } = f
                  def CoalgHom.copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :

                  Copy of a CoalgHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                  Equations
                  • f.copy f' h = { toLinearMap := (↑f).copy f' h, counit_comp := , map_comp_comul := }
                  Instances For
                    @[simp]
                    theorem CoalgHom.coe_copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :
                    (f.copy f' h) = f'
                    theorem CoalgHom.copy_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :
                    f.copy f' h = f
                    def CoalgHom.id (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :

                    Identity map as a CoalgHom.

                    Equations
                    • CoalgHom.id R A = { toLinearMap := LinearMap.id, counit_comp := , map_comp_comul := }
                    Instances For
                      @[simp]
                      theorem CoalgHom.id_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (a : A) :
                      (CoalgHom.id R A) a = a
                      @[simp]
                      theorem CoalgHom.coe_id {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                      (CoalgHom.id R A) = id
                      @[simp]
                      theorem CoalgHom.id_toLinearMap {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                      (CoalgHom.id R A) = LinearMap.id
                      def CoalgHom.comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :

                      Composition of coalgebra homomorphisms.

                      Equations
                      • φ₁.comp φ₂ = { toLinearMap := φ₁ ∘ₗ φ₂, counit_comp := , map_comp_comul := }
                      Instances For
                        @[simp]
                        theorem CoalgHom.comp_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :
                        ∀ (a : A), (φ₁.comp φ₂) a = φ₁ (φ₂ a)
                        @[simp]
                        theorem CoalgHom.coe_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :
                        (φ₁.comp φ₂) = φ₁ φ₂
                        @[simp]
                        theorem CoalgHom.comp_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :
                        (φ₁.comp φ₂) = φ₁ ∘ₗ φ₂
                        @[simp]
                        theorem CoalgHom.comp_id {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) :
                        φ.comp (CoalgHom.id R A) = φ
                        @[simp]
                        theorem CoalgHom.id_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) :
                        (CoalgHom.id R B).comp φ = φ
                        theorem CoalgHom.comp_assoc {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [AddCommMonoid D] [Module R D] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] [CoalgebraStruct R D] (φ₁ : C →ₗc[R] D) (φ₂ : B →ₗc[R] C) (φ₃ : A →ₗc[R] B) :
                        (φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃)
                        theorem CoalgHom.map_smul_of_tower {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) {R' : Type u_6} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R') (x : A) :
                        φ (r x) = r φ x
                        instance CoalgHom.End {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                        Equations
                        • CoalgHom.End = Monoid.mk npowRecAuto
                        theorem CoalgHom.End_toOne_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                        theorem CoalgHom.End_toSemigroup_toMul_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (φ₁ : A →ₗc[R] A) (φ₂ : A →ₗc[R] A) :
                        φ₁ * φ₂ = φ₁.comp φ₂
                        @[simp]
                        theorem CoalgHom.one_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (x : A) :
                        1 x = x
                        @[simp]
                        theorem CoalgHom.mul_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (φ : A →ₗc[R] A) (ψ : A →ₗc[R] A) (x : A) :
                        (φ * ψ) x = φ (ψ x)

                        The counit of a coalgebra as a CoalgHom.

                        Equations
                        Instances For
                          @[simp]
                          theorem Coalgebra.counitCoalgHom_apply (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (x : A) :
                          (Coalgebra.counitCoalgHom R A) x = Coalgebra.counit x
                          @[simp]
                          theorem Coalgebra.counitCoalgHom_toLinearMap (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] :
                          (Coalgebra.counitCoalgHom R A) = Coalgebra.counit
                          Equations
                          • =
                          theorem Coalgebra.ext_to_ring {R : Type u} (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (f : A →ₗc[R] R) (g : A →ₗc[R] R) :
                          f = g
                          def Coalgebra.Repr.induced {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :

                          If φ : A → B is a coalgebra map and a = ∑ xᵢ ⊗ yᵢ, then φ a = ∑ φ xᵢ ⊗ φ yᵢ

                          Equations
                          Instances For
                            @[simp]
                            theorem Coalgebra.Repr.induced_index {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                            (repr.induced φ).index = repr.index
                            @[simp]
                            theorem Coalgebra.Repr.induced_left {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                            ∀ (a_1 : repr), (repr.induced φ).left a_1 = (φ repr.left) a_1
                            @[simp]
                            theorem Coalgebra.Repr.induced_right {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                            ∀ (a_1 : repr), (repr.induced φ).right a_1 = (φ repr.right) a_1
                            @[simp]
                            theorem Coalgebra.Repr.induced_ι {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                            (repr.induced φ) = repr