Documentation

Mathlib.RingTheory.Bialgebra.Equiv

Isomorphisms of R-bialgebras #

This file defines bundled isomorphisms of R-bialgebras. We simply mimic the early parts of Mathlib/Algebra/Algebra/Equiv.lean.

Main definitions #

Notations #

structure BialgEquiv (R : Type u) [CommSemiring R] (A : Type v) (B : Type w) [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends A ≃ₗc[R] B, A ≃* B :
Type (max v w)

An equivalence of bialgebras is an invertible bialgebra homomorphism.

Instances For

    An equivalence of bialgebras is an invertible bialgebra homomorphism.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      class BialgEquivClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] extends CoalgEquivClass F R A B, MulEquivClass F A B :

      BialgEquivClass F R A B asserts F is a type of bundled bialgebra equivalences from A to B.

      Instances
        @[instance 100]
        instance BialgEquivClass.toBialgHomClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
        def BialgEquivClass.toBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] (f : F) :

        Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

        Equations
        • f = { toCoalgEquiv := f, map_mul' := }
        Instances For
          instance BialgEquivClass.instCoeToBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :

          Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

          Equations
          @[instance 100]
          instance BialgEquivClass.toAlgEquivClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
          def BialgEquiv.toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

          The bialgebra morphism underlying a bialgebra equivalence.

          Equations
          • f.toBialgHom = { toCoalgHom := f.toCoalgHom, map_one' := , map_mul' := }
          Instances For
            def BialgEquiv.toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

            The algebra equivalence underlying a bialgebra equivalence.

            Equations
            • f.toAlgEquiv = { toFun := f.toFun, invFun := f.invFun, left_inv := , right_inv := , map_mul' := , map_add' := , commutes' := }
            Instances For
              def BialgEquiv.toEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
              (A ≃ₐc[R] B)A B

              The equivalence of types underlying a bialgebra equivalence.

              Equations
              • f.toEquiv = f.toEquiv
              Instances For
                @[simp]
                theorem BialgEquiv.toEquiv_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₐc[R] B} :
                e₁.toEquiv = e₂.toEquiv e₁ = e₂
                instance BialgEquiv.instEquivLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                EquivLike (A ≃ₐc[R] B) A B
                Equations
                instance BialgEquiv.instFunLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                FunLike (A ≃ₐc[R] B) A B
                Equations
                @[simp]
                theorem BialgEquiv.toBialgHom_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₐc[R] B} :
                e₁ = e₂ e₁ = e₂
                @[simp]
                theorem BialgEquiv.coe_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} {h : ∀ (x y : A), f (x + y) = f x + f y} {h₀ : ∀ (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h }.toFun x} {h₁ : CoalgebraStruct.counit ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ } = CoalgebraStruct.counit} {h₂ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := h₀ } { toFun := f, map_add' := h, map_smul' := h₀ } ∘ₗ CoalgebraStruct.comul = CoalgebraStruct.comul ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ }} {h₃ : BA} {h₄ : Function.LeftInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₅ : Function.RightInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₆ : ∀ (x y : A), { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun (x * y) = { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun x * { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun y} :
                { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅, map_mul' := h₆ } = f
                def BialgEquiv.Simps.apply {R : Type u} [CommSemiring R] {α : Type v} {β : Type w} [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α ≃ₐc[R] β) :
                αβ

                See Note [custom simps projection]

                Equations
                Instances For
                  @[simp]
                  theorem BialgEquiv.coe_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  @[simp]
                  theorem BialgEquiv.toCoalgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                  f.toCoalgEquiv = f
                  @[simp]
                  theorem BialgEquiv.toBialgHom_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                  f.toBialgHom = f
                  @[simp]
                  theorem BialgEquiv.toAlgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                  f.toAlgEquiv = f
                  @[simp]
                  theorem BialgEquiv.coe_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  @[simp]
                  theorem BialgEquiv.coe_toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  @[simp]
                  theorem BialgEquiv.coe_toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  theorem BialgEquiv.toCoalgEquiv_toCoalgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  theorem BialgEquiv.toBialgHom_toAlgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                  e = e
                  theorem BialgEquiv.ext {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₐc[R] B} (h : ∀ (x : A), e x = e' x) :
                  e = e'
                  theorem BialgEquiv.congr_arg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₐc[R] B} {x x' : A} :
                  x = x'e x = e x'
                  theorem BialgEquiv.congr_fun {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₐc[R] B} (h : e = e') (x : A) :
                  e x = e' x
                  def BialgEquiv.refl (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] :

                  The identity map is a bialgebra equivalence.

                  Equations
                  Instances For
                    @[simp]
                    theorem BialgEquiv.refl_apply (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] (a : A) :
                    (BialgEquiv.refl R A) a = a
                    @[simp]
                    theorem BialgEquiv.refl_invFun (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] (a✝ : A) :
                    (BialgEquiv.refl R A).invFun a✝ = a✝
                    @[simp]
                    def BialgEquiv.symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :

                    Bialgebra equivalences are symmetric.

                    Equations
                    • e.symm = { toCoalgEquiv := (↑e).symm, map_mul' := }
                    Instances For
                      @[simp]
                      theorem BialgEquiv.symm_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e.symm = (↑e).symm
                      def BialgEquiv.Simps.symm_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      BA

                      See Note [custom simps projection]

                      Equations
                      Instances For
                        theorem BialgEquiv.invFun_eq_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                        e.invFun = e.symm
                        @[simp]
                        theorem BialgEquiv.coe_toEquiv_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                        e.toEquiv.symm = e.symm
                        def BialgEquiv.trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) :

                        Bialgebra equivalences are transitive.

                        Equations
                        • e₁₂.trans e₂₃ = { toCoalgEquiv := (↑e₁₂).trans e₂₃, map_mul' := }
                        Instances For
                          @[simp]
                          theorem BialgEquiv.trans_apply {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) (a✝ : A) :
                          (e₁₂.trans e₂₃) a✝ = e₂₃ (e₁₂ a✝)
                          @[simp]
                          theorem BialgEquiv.trans_invFun {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) (a✝ : C) :
                          (e₁₂.trans e₂₃).invFun a✝ = (↑e₁₂).symm ((↑e₂₃).symm a✝)
                          @[simp]
                          theorem BialgEquiv.trans_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                          (e₁₂.trans e₂₃) = (↑e₁₂).trans e₂₃
                          @[simp]
                          theorem BialgEquiv.trans_toBialgHom {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                          (e₁₂.trans e₂₃) = (↑e₂₃).comp e₁₂
                          @[simp]
                          theorem BialgEquiv.coe_toEquiv_trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                          (↑e₁₂).trans e₂₃ = (e₁₂.trans e₂₃)