Documentation

Mathlib.RingTheory.Bialgebra.Equiv

Isomorphisms of R-bialgebras #

This file defines bundled isomorphisms of R-bialgebras. We simply mimic the early parts of Mathlib/Algebra/Algebra/Equiv.lean.

Main definitions #

Notations #

structure BialgEquiv (R : Type u) [CommSemiring R] (A : Type v) (B : Type w) [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends CoalgEquiv , MulEquiv , CoalgHom , LinearEquiv , LinearMap , AddEquiv , Equiv , AddHom , MulActionHom , MulHom :
Type (max v w)

An equivalence of bialgebras is an invertible bialgebra homomorphism.

    Instances For

      An equivalence of bialgebras is an invertible bialgebra homomorphism.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        BialgEquivClass F R A B asserts F is a type of bundled bialgebra equivalences from A to B.

          Instances
            @[instance 100]
            instance BialgEquivClass.toBialgHomClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
            Equations
            • =
            def BialgEquivClass.toBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] (f : F) :

            Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

            Equations
            • f = { toCoalgEquiv := f, map_mul' := }
            Instances For
              instance BialgEquivClass.instCoeToBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :

              Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

              Equations
              • BialgEquivClass.instCoeToBialgEquiv = { coe := fun (f : F) => f }
              @[instance 100]
              instance BialgEquivClass.toAlgEquivClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
              Equations
              • =
              def BialgEquiv.toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

              The bialgebra morphism underlying a bialgebra equivalence.

              Equations
              • f.toBialgHom = { toCoalgHom := f.toCoalgHom, map_one' := , map_mul' := }
              Instances For
                def BialgEquiv.toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

                The algebra equivalence underlying a bialgebra equivalence.

                Equations
                • f.toAlgEquiv = { toFun := f.toFun, invFun := f.invFun, left_inv := , right_inv := , map_mul' := , map_add' := , commutes' := }
                Instances For
                  def BialgEquiv.toEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                  (A ≃ₐc[R] B)A B

                  The equivalence of types underlying a bialgebra equivalence.

                  Equations
                  • f.toEquiv = f.toEquiv
                  Instances For
                    theorem BialgEquiv.toEquiv_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                    Function.Injective BialgEquiv.toEquiv
                    @[simp]
                    theorem BialgEquiv.toEquiv_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ : A ≃ₐc[R] B} {e₂ : A ≃ₐc[R] B} :
                    e₁.toEquiv = e₂.toEquiv e₁ = e₂
                    theorem BialgEquiv.toBialgHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                    Function.Injective BialgEquiv.toBialgHom
                    instance BialgEquiv.instEquivLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                    EquivLike (A ≃ₐc[R] B) A B
                    Equations
                    • BialgEquiv.instEquivLike = { coe := fun (f : A ≃ₐc[R] B) => f.toFun, inv := fun (f : A ≃ₐc[R] B) => f.invFun, left_inv := , right_inv := , coe_injective' := }
                    instance BialgEquiv.instFunLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                    FunLike (A ≃ₐc[R] B) A B
                    Equations
                    • BialgEquiv.instFunLike = { coe := DFunLike.coe, coe_injective' := }
                    instance BialgEquiv.instBialgEquivClass {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
                    Equations
                    • =
                    @[simp]
                    theorem BialgEquiv.toBialgHom_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ : A ≃ₐc[R] B} {e₂ : A ≃ₐc[R] B} :
                    e₁ = e₂ e₁ = e₂
                    @[simp]
                    theorem BialgEquiv.coe_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} {h : ∀ (x y : A), f (x + y) = f x + f y} {h₀ : ∀ (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h }.toFun x} {h₁ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ } = Coalgebra.counit} {h₂ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := h₀ } { toFun := f, map_add' := h, map_smul' := h₀ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ }} {h₃ : BA} {h₄ : Function.LeftInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₅ : Function.RightInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₆ : ∀ (x y : A), { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun (x * y) = { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun x * { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun y} :
                    { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅, map_mul' := h₆ } = f
                    def BialgEquiv.Simps.apply {R : Type u} [CommSemiring R] {α : Type v} {β : Type w} [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α ≃ₐc[R] β) :
                    αβ

                    See Note [custom simps projection]

                    Equations
                    Instances For
                      @[simp]
                      theorem BialgEquiv.coe_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      @[simp]
                      theorem BialgEquiv.toCoalgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                      f.toCoalgEquiv = f
                      @[simp]
                      theorem BialgEquiv.toBialgHom_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                      f.toBialgHom = f
                      @[simp]
                      theorem BialgEquiv.toAlgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
                      f.toAlgEquiv = f
                      @[simp]
                      theorem BialgEquiv.coe_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      @[simp]
                      theorem BialgEquiv.coe_toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      @[simp]
                      theorem BialgEquiv.coe_toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      theorem BialgEquiv.toCoalgEquiv_toCoalgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      theorem BialgEquiv.toBialgHom_toAlgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                      e = e
                      theorem BialgEquiv.ext {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₐc[R] B} {e' : A ≃ₐc[R] B} (h : ∀ (x : A), e x = e' x) :
                      e = e'
                      theorem BialgEquiv.congr_arg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₐc[R] B} {x : A} {x' : A} :
                      x = x'e x = e x'
                      theorem BialgEquiv.congr_fun {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₐc[R] B} {e' : A ≃ₐc[R] B} (h : e = e') (x : A) :
                      e x = e' x
                      def BialgEquiv.refl (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] :

                      The identity map is a bialgebra equivalence.

                      Equations
                      Instances For
                        @[simp]
                        theorem BialgEquiv.refl_apply (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] (a : A) :
                        (BialgEquiv.refl R A) a = a
                        @[simp]
                        theorem BialgEquiv.refl_invFun (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] :
                        ∀ (a : A), (BialgEquiv.refl R A).invFun a = a
                        @[simp]
                        def BialgEquiv.symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :

                        Bialgebra equivalences are symmetric.

                        Equations
                        • e.symm = { toCoalgEquiv := (↑e).symm, map_mul' := }
                        Instances For
                          @[simp]
                          theorem BialgEquiv.symm_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                          e.symm = (↑e).symm
                          def BialgEquiv.Simps.symm_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                          BA

                          See Note [custom simps projection]

                          Equations
                          Instances For
                            theorem BialgEquiv.invFun_eq_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                            e.invFun = e.symm
                            @[simp]
                            theorem BialgEquiv.coe_toEquiv_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
                            e.toEquiv.symm = e.symm
                            def BialgEquiv.trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) :

                            Bialgebra equivalences are transitive.

                            Equations
                            • e₁₂.trans e₂₃ = { toCoalgEquiv := (↑e₁₂).trans e₂₃, map_mul' := }
                            Instances For
                              @[simp]
                              theorem BialgEquiv.trans_apply {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) :
                              ∀ (a : A), (e₁₂.trans e₂₃) a = e₂₃ (e₁₂ a)
                              @[simp]
                              theorem BialgEquiv.trans_invFun {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) :
                              ∀ (a : C), (e₁₂.trans e₂₃).invFun a = (↑e₁₂).symm ((↑e₂₃).symm a)
                              @[simp]
                              theorem BialgEquiv.trans_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                              (e₁₂.trans e₂₃) = (↑e₁₂).trans e₂₃
                              @[simp]
                              theorem BialgEquiv.trans_toBialgHom {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                              (e₁₂.trans e₂₃) = (↑e₂₃).comp e₁₂
                              @[simp]
                              theorem BialgEquiv.coe_toEquiv_trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
                              (↑e₁₂).trans e₂₃ = (e₁₂.trans e₂₃)