Documentation

Mathlib.RingTheory.AlgebraicIndependent

Algebraic Independence #

This file defines algebraic independence of a family of element of an R algebra.

Main definitions #

References #

TODO #

Define the transcendence degree and show it is independent of the choice of a transcendence basis.

Tags #

transcendence basis, transcendence degree, transcendence

def AlgebraicIndependent {ι : Type u_1} (R : Type u_3) {A : Type u_5} (x : ιA) [CommRing R] [CommRing A] [Algebra R A] :

AlgebraicIndependent R x states the family of elements x is algebraically independent over R, meaning that the canonical map out of the multivariable polynomial ring is injective.

Equations
Instances For
    theorem algebraicIndependent_iff_ker_eq_bot {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] :
    theorem algebraicIndependent_iff {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] :
    AlgebraicIndependent R x ∀ (p : MvPolynomial ι R), (MvPolynomial.aeval x) p = 0p = 0
    theorem AlgebraicIndependent.eq_zero_of_aeval_eq_zero {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (h : AlgebraicIndependent R x) (p : MvPolynomial ι R) :
    (MvPolynomial.aeval x) p = 0p = 0
    @[simp]
    theorem algebraicIndependent_empty_type_iff {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [IsEmpty ι] :
    @[simp]
    theorem algebraicIndependent_unique_type_iff {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Unique ι] :

    A one-element family x is algebraically independent if and only if its element is transcendental.

    The one-element family ![x] is algebraically independent if and only if x is transcendental.

    theorem AlgebraicIndependent.of_comp {ι : Type u_1} {R : Type u_3} {A : Type u_5} {A' : Type u_6} {x : ιA} [CommRing R] [CommRing A] [CommRing A'] [Algebra R A] [Algebra R A'] (f : A →ₐ[R] A') (hfv : AlgebraicIndependent R (f x)) :
    theorem AlgebraicIndependent.algebraMap_injective {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
    theorem AlgebraicIndependent.linearIndependent {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
    theorem AlgebraicIndependent.injective {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Nontrivial R] :
    theorem AlgebraicIndependent.ne_zero {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Nontrivial R] (i : ι) :
    x i 0
    theorem AlgebraicIndependent.comp {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (f : ι'ι) (hf : Function.Injective f) :
    theorem AlgebraicIndependent.coe_range {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
    AlgebraicIndependent R Subtype.val
    theorem AlgebraicIndependent.map {ι : Type u_1} {R : Type u_3} {A : Type u_5} {A' : Type u_6} {x : ιA} [CommRing R] [CommRing A] [CommRing A'] [Algebra R A] [Algebra R A'] (hx : AlgebraicIndependent R x) {f : A →ₐ[R] A'} (hf_inj : Set.InjOn f (Algebra.adjoin R (Set.range x))) :
    theorem AlgebraicIndependent.map' {ι : Type u_1} {R : Type u_3} {A : Type u_5} {A' : Type u_6} {x : ιA} [CommRing R] [CommRing A] [CommRing A'] [Algebra R A] [Algebra R A'] (hx : AlgebraicIndependent R x) {f : A →ₐ[R] A'} (hf_inj : Function.Injective f) :
    theorem AlgebraicIndependent.transcendental {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (i : ι) :

    If a family x is algebraically independent, then any of its element is transcendental.

    theorem AlgebraicIndependent.aeval_of_algebraicIndependent {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {f : ιMvPolynomial ι R} (hf : AlgebraicIndependent R f) :
    AlgebraicIndependent R fun (i : ι) => (MvPolynomial.aeval x) (f i)

    If x = {x_i : A | i : ι} and f = {f_i : MvPolynomial ι R | i : ι} are algebraically independent over R, then {f_i(x) | i : ι} is also algebraically independent over R. For the partial converse, see AlgebraicIndependent.of_aeval.

    theorem AlgebraicIndependent.of_aeval {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {f : ιMvPolynomial ι R} (H : AlgebraicIndependent R fun (i : ι) => (MvPolynomial.aeval x) (f i)) :

    If {f_i(x) | i : ι} is algebraically independent over R, then {f_i : MvPolynomial ι R | i : ι} is also algebraically independent over R. In fact, the x = {x_i : A | i : ι} is also transcendental over R provided that R is a field and ι is finite; the proof needs transcendence degree.

    theorem AlgebraicIndependent.isEmpty_of_isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) [Algebra.IsAlgebraic R A] :

    If A/R is algebraic, then all algebraically independent families are empty.

    theorem MvPolynomial.algebraicIndependent_X (σ : Type u_7) (R : Type u_8) [CommRing R] :
    AlgebraicIndependent R MvPolynomial.X
    theorem AlgHom.algebraicIndependent_iff {ι : Type u_1} {R : Type u_3} {A : Type u_5} {A' : Type u_6} {x : ιA} [CommRing R] [CommRing A] [CommRing A'] [Algebra R A] [Algebra R A'] (f : A →ₐ[R] A') (hf : Function.Injective f) :
    theorem algebraicIndependent_of_subsingleton {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Subsingleton R] :
    theorem algebraicIndependent_equiv {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (e : ι ι') {f : ι'A} :
    theorem algebraicIndependent_equiv' {ι : Type u_1} {ι' : Type u_2} {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (e : ι ι') {f : ι'A} {g : ιA} (h : f e = g) :
    theorem algebraicIndependent_subtype_range {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {f : ιA} (hf : Function.Injective f) :
    theorem AlgebraicIndependent.of_subtype_range {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {f : ιA} (hf : Function.Injective f) :

    Alias of the forward direction of algebraicIndependent_subtype_range.

    theorem algebraicIndependent_image {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {s : Set ι} {f : ιA} (hf : Set.InjOn f s) :
    (AlgebraicIndependent R fun (x : s) => f x) AlgebraicIndependent R fun (x : (f '' s)) => x
    theorem algebraicIndependent_adjoin {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hs : AlgebraicIndependent R x) :
    AlgebraicIndependent R fun (i : ι) => x i,
    theorem AlgebraicIndependent.restrictScalars {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {K : Type u_7} [CommRing K] [Algebra R K] [Algebra K A] [IsScalarTower R K A] (hinj : Function.Injective (algebraMap R K)) (ai : AlgebraicIndependent K x) :

    A set of algebraically independent elements in an algebra A over a ring K is also algebraically independent over a subring R of K.

    theorem AlgebraicIndependent.of_ringHom_of_comp_eq {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {S : Type u_7} {B : Type u_8} {FRS : Type u_9} {FAB : Type u_10} [CommRing S] [CommRing B] [Algebra S B] [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) (H : AlgebraicIndependent S (g x)) (hf : Function.Injective f) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
    theorem AlgebraicIndependent.ringHom_of_comp_eq {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {S : Type u_7} {B : Type u_8} {FRS : Type u_9} {FAB : Type u_10} [CommRing S] [CommRing B] [Algebra S B] [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) (H : AlgebraicIndependent R x) (hf : Function.Surjective f) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
    theorem algebraicIndependent_ringHom_iff_of_comp_eq {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {S : Type u_7} {B : Type u_8} {FRS : Type u_9} {FAB : Type u_10} [CommRing S] [CommRing B] [Algebra S B] [EquivLike FRS R S] [RingEquivClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
    theorem algebraicIndependent_finset_map_embedding_subtype {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (s : Set A) (li : AlgebraicIndependent R Subtype.val) (t : Finset s) :
    AlgebraicIndependent R Subtype.val

    Every finite subset of an algebraically independent set is algebraically independent.

    theorem algebraicIndependent_bounded_of_finset_algebraicIndependent_bounded {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {n : } (H : ∀ (s : Finset A), (AlgebraicIndependent R fun (i : { x : A // x s }) => i)s.card n) (s : Set A) :
    AlgebraicIndependent R Subtype.valCardinal.mk s n

    If every finite set of algebraically independent element has cardinality at most n, then the same is true for arbitrary sets of algebraically independent elements.

    theorem AlgebraicIndependent.restrict_of_comp_subtype {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {s : Set ι} (hs : AlgebraicIndependent R (x Subtype.val)) :
    AlgebraicIndependent R (s.restrict x)
    theorem AlgebraicIndependent.mono {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {t s : Set A} (h : t s) (hx : AlgebraicIndependent R Subtype.val) :
    AlgebraicIndependent R Subtype.val
    theorem AlgebraicIndependent.to_subtype_range {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {f : ιA} (hf : AlgebraicIndependent R f) :
    AlgebraicIndependent R Subtype.val
    theorem AlgebraicIndependent.to_subtype_range' {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {f : ιA} (hf : AlgebraicIndependent R f) {t : Set A} (ht : Set.range f = t) :
    AlgebraicIndependent R Subtype.val
    theorem algebraicIndependent_comp_subtype {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] {s : Set ι} :
    AlgebraicIndependent R (x Subtype.val) pMvPolynomial.supported R s, (MvPolynomial.aeval x) p = 0p = 0
    theorem algebraicIndependent_subtype {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {s : Set A} :
    AlgebraicIndependent R Subtype.val pMvPolynomial.supported R s, (MvPolynomial.aeval id) p = 0p = 0
    theorem algebraicIndependent_of_finite {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (s : Set A) (H : ts, t.FiniteAlgebraicIndependent R Subtype.val) :
    AlgebraicIndependent R Subtype.val
    theorem AlgebraicIndependent.image_of_comp {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {ι' : Type u_8} (s : Set ι) (f : ιι') (g : ι'A) (hs : AlgebraicIndependent R fun (x : s) => g (f x)) :
    AlgebraicIndependent R fun (x : (f '' s)) => g x
    theorem AlgebraicIndependent.image {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {ι : Type u_7} {s : Set ι} {f : ιA} (hs : AlgebraicIndependent R fun (x : s) => f x) :
    AlgebraicIndependent R fun (x : (f '' s)) => x
    theorem algebraicIndependent_iUnion_of_directed {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {η : Type u_7} [Nonempty η] {s : ηSet A} (hs : Directed (fun (x1 x2 : Set A) => x1 x2) s) (h : ∀ (i : η), AlgebraicIndependent R Subtype.val) :
    AlgebraicIndependent R Subtype.val
    theorem algebraicIndependent_sUnion_of_directed {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] {s : Set (Set A)} (hsn : s.Nonempty) (hs : DirectedOn (fun (x1 x2 : Set A) => x1 x2) s) (h : as, AlgebraicIndependent R Subtype.val) :
    AlgebraicIndependent R Subtype.val
    theorem exists_maximal_algebraicIndependent {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (s t : Set A) (hst : s t) (hs : AlgebraicIndependent R Subtype.val) :
    ∃ (u : Set A), s u Maximal (fun (x : Set A) => AlgebraicIndependent R Subtype.val x t) u
    def AlgebraicIndependent.aevalEquiv {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :

    Canonical isomorphism between polynomials and the subalgebra generated by algebraically independent elements.

    Equations
    Instances For
      @[simp]
      theorem AlgebraicIndependent.aevalEquiv_apply_coe {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (a✝ : MvPolynomial ι R) :
      (hx.aevalEquiv a✝) = (MvPolynomial.aeval x) a✝
      theorem AlgebraicIndependent.algebraMap_aevalEquiv {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (p : MvPolynomial ι R) :
      (algebraMap (↥(Algebra.adjoin R (Set.range x))) A) (hx.aevalEquiv p) = (MvPolynomial.aeval x) p
      def AlgebraicIndependent.repr {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :

      The canonical map from the subalgebra generated by an algebraic independent family into the polynomial ring.

      Equations
      • hx.repr = hx.aevalEquiv.symm
      Instances For
        @[simp]
        theorem AlgebraicIndependent.aeval_repr {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (p : (Algebra.adjoin R (Set.range x))) :
        (MvPolynomial.aeval x) (hx.repr p) = p
        theorem AlgebraicIndependent.aeval_comp_repr {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
        (MvPolynomial.aeval x).comp hx.repr = (Algebra.adjoin R (Set.range x)).val
        theorem AlgebraicIndependent.repr_ker {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
        RingHom.ker hx.repr =
        def AlgebraicIndependent.aevalEquivField {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :

        Canonical isomorphism between rational function field and the intermediate field generated by algebraically independent elements.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicIndependent.aevalEquivField_apply_coe {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (a : FractionRing (MvPolynomial ι F)) :
          (hx.aevalEquivField a) = (IsFractionRing.lift ) a
          theorem AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (a : MvPolynomial ι F) :
          (hx.aevalEquivField ((algebraMap (MvPolynomial ι F) (FractionRing (MvPolynomial ι F))) a)) = (MvPolynomial.aeval x) a
          def AlgebraicIndependent.reprField {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :

          The canonical map from the intermediate field generated by an algebraic independent family into the rational function field.

          Equations
          • hx.reprField = hx.aevalEquivField.symm
          Instances For
            @[simp]
            theorem AlgebraicIndependent.lift_reprField {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) (p : (IntermediateField.adjoin F (Set.range x))) :
            (IsFractionRing.lift ) (hx.reprField p) = p
            theorem AlgebraicIndependent.liftAlgHom_comp_reprField {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : AlgebraicIndependent F x) :

            The isomorphism between MvPolynomial (Option ι) R and the polynomial ring over the algebra generated by an algebraically independent family.

            Equations
            Instances For
              @[simp]
              theorem AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (y : MvPolynomial (Option ι) R) :
              hx.mvPolynomialOptionEquivPolynomialAdjoin y = Polynomial.map (↑hx.aevalEquiv) ((MvPolynomial.aeval fun (o : Option ι) => o.elim Polynomial.X fun (s : ι) => Polynomial.C (MvPolynomial.X s)) y)
              @[simp]
              theorem AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C' {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (r : R) :
              Polynomial.C (hx.aevalEquiv (MvPolynomial.C r)) = Polynomial.C ((algebraMap R (Algebra.adjoin R (Set.range x))) r)

              simp-normal form of mvPolynomialOptionEquivPolynomialAdjoin_C

              theorem AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (r : R) :
              hx.mvPolynomialOptionEquivPolynomialAdjoin (MvPolynomial.C r) = Polynomial.C ((algebraMap R (Algebra.adjoin R (Set.range x))) r)
              theorem AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) :
              hx.mvPolynomialOptionEquivPolynomialAdjoin (MvPolynomial.X none) = Polynomial.X
              theorem AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (i : ι) :
              hx.mvPolynomialOptionEquivPolynomialAdjoin (MvPolynomial.X (some i)) = Polynomial.C (hx.aevalEquiv (MvPolynomial.X i))
              theorem AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (a : A) :
              (↑(Polynomial.aeval a)).comp hx.mvPolynomialOptionEquivPolynomialAdjoin.toRingHom = (MvPolynomial.aeval fun (o : Option ι) => o.elim a x)
              theorem AlgebraicIndependent.option_iff {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) (a : A) :
              (AlgebraicIndependent R fun (o : Option ι) => o.elim a x) Transcendental (↥(Algebra.adjoin R (Set.range x))) a
              theorem algebraicIndependent_of_finite' {R : Type u_3} {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (s : Set A) (hinj : Function.Injective (algebraMap R A)) (H : ts, t.Finiteas, atTranscendental (↥(Algebra.adjoin R t)) a) :
              AlgebraicIndependent R Subtype.val

              Variant of algebraicIndependent_of_finite using Transcendental.

              theorem algebraicIndependent_of_finite_type' {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hinj : Function.Injective (algebraMap R A)) (H : ∀ (t : Set ι), t.Finiteit, Transcendental (↥(Algebra.adjoin R (x '' t))) (x i)) :

              Type version of algebraicIndependent_of_finite'.

              theorem MvPolynomial.algebraicIndependent_polynomial_aeval_X {ι : Type u_1} {R : Type u_3} [CommRing R] (f : ιPolynomial R) (hf : ∀ (i : ι), Transcendental R (f i)) :

              If for each i : ι, f_i : R[X] is transcendental over R, then {f_i(X_i) | i : ι} in MvPolynomial ι R is algebraically independent over R.

              theorem AlgebraicIndependent.polynomial_aeval_of_transcendental {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] (hx : AlgebraicIndependent R x) {f : ιPolynomial R} (hf : ∀ (i : ι), Transcendental R (f i)) :
              AlgebraicIndependent R fun (i : ι) => (Polynomial.aeval (x i)) (f i)

              If {x_i : A | i : ι} is algebraically independent over R, and for each i, f_i : R[X] is transcendental over R, then {f_i(x_i) | i : ι} is also algebraically independent over R.

              def IsTranscendenceBasis {ι : Type u_1} (R : Type u_3) {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (x : ιA) :

              A family is a transcendence basis if it is a maximal algebraically independent subset.

              Equations
              Instances For
                theorem exists_isTranscendenceBasis (R : Type u_3) {A : Type u_5} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective (algebraMap R A)) :
                ∃ (s : Set A), IsTranscendenceBasis R Subtype.val
                theorem exists_isTranscendenceBasis' (R : Type u) {A : Type v} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective (algebraMap R A)) :
                ∃ (ι : Type v) (x : ιA), IsTranscendenceBasis R x

                Type version of exists_isTranscendenceBasis.

                theorem AlgebraicIndependent.isTranscendenceBasis_iff {ι : Type w} {R : Type u} [CommRing R] [Nontrivial R] {A : Type v} [CommRing A] [Algebra R A] {x : ιA} (i : AlgebraicIndependent R x) :
                IsTranscendenceBasis R x ∀ (κ : Type v) (w : κA), AlgebraicIndependent R w∀ (j : ικ), w j = xFunction.Surjective j
                theorem IsTranscendenceBasis.isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :
                theorem IsTranscendenceBasis.isEmpty_iff_isAlgebraic {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :

                If x is a transcendence basis of A/R, then it is empty if and only if A/R is algebraic.

                theorem IsTranscendenceBasis.nonempty_iff_transcendental {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ιA} [CommRing R] [CommRing A] [Algebra R A] [Nontrivial R] (hx : IsTranscendenceBasis R x) :

                If x is a transcendence basis of A/R, then it is not empty if and only if A/R is transcendental.

                theorem IsTranscendenceBasis.isAlgebraic_field {ι : Type u_1} {F : Type u_7} {E : Type u_8} {x : ιE} [Field F] [Field E] [Algebra F E] (hx : IsTranscendenceBasis F x) :
                theorem algebraicIndependent_empty_type {ι : Type u_1} {K : Type u_4} {A : Type u_5} {x : ιA} [CommRing A] [Field K] [Algebra K A] [IsEmpty ι] [Nontrivial A] :
                theorem algebraicIndependent_empty {K : Type u_4} {A : Type u_5} [CommRing A] [Field K] [Algebra K A] [Nontrivial A] :
                AlgebraicIndependent K Subtype.val
                theorem IntermediateField.rank_sup_le {F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] (A B : IntermediateField F E) :
                Module.rank F (A B) Module.rank F A * Module.rank F B