Documentation

Mathlib.NumberTheory.RamificationInertia.Basic

Ramification index and inertia degree #

Given P : Ideal S lying over p : Ideal R for the ring extension f : R →+* S (assuming P and p are prime or maximal where needed), the ramification index Ideal.ramificationIdx f p P is the multiplicity of P in map f p, and the inertia degree Ideal.inertiaDeg f p P is the degree of the field extension (S / P) : (R / p).

Main results #

The main theorem Ideal.sum_ramification_inertia states that for all coprime P lying over p, Σ P, ramification_idx f p P * inertia_deg f p P equals the degree of the field extension Frac(S) : Frac(R).

Implementation notes #

Often the above theory is set up in the case where:

Notation #

In this file, e stands for the ramification index and f for the inertia degree of P over p, leaving p and P implicit.

noncomputable def Ideal.ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] (f : R →+* S) (p : Ideal R) (P : Ideal S) :

The ramification index of P over p is the largest exponent n such that p is contained in P^n.

In particular, if p is not contained in P^n, then the ramification index is 0.

If there is no largest such n (e.g. because p = ⊥), then ramificationIdx is defined to be 0.

Equations
Instances For
    theorem Ideal.ramificationIdx_eq_find {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} [DecidablePred fun (n : ) => ∀ (k : ), Ideal.map f p P ^ kk n] (h : ∃ (n : ), ∀ (k : ), Ideal.map f p P ^ kk n) :
    theorem Ideal.ramificationIdx_eq_zero {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} (h : ∀ (n : ), ∃ (k : ), Ideal.map f p P ^ k n < k) :
    theorem Ideal.ramificationIdx_spec {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} {n : } (hle : Ideal.map f p P ^ n) (hgt : ¬Ideal.map f p P ^ (n + 1)) :
    theorem Ideal.ramificationIdx_lt {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} {n : } (hgt : ¬Ideal.map f p P ^ n) :
    @[simp]
    theorem Ideal.ramificationIdx_bot {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {P : Ideal S} :
    @[simp]
    theorem Ideal.ramificationIdx_of_not_le {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} (h : ¬Ideal.map f p P) :
    theorem Ideal.ramificationIdx_ne_zero {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} {e : } (he : e 0) (hle : Ideal.map f p P ^ e) (hnle : ¬Ideal.map f p P ^ (e + 1)) :
    theorem Ideal.le_pow_of_le_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} {n : } (hn : n Ideal.ramificationIdx f p P) :
    Ideal.map f p P ^ n
    theorem Ideal.le_pow_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} :
    theorem Ideal.le_comap_pow_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} :
    theorem Ideal.le_comap_of_ramificationIdx_ne_zero {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} (h : Ideal.ramificationIdx f p P 0) :
    theorem Ideal.ramificationIdx_comap_eq {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) {S₁ : Type u_1} [CommRing S₁] [Algebra R S₁] [Algebra R S] (e : S ≃ₐ[R] S₁) (P : Ideal S₁) :
    theorem Ideal.ramificationIdx_map_eq {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) {S₁ : Type u_1} [CommRing S₁] [Algebra R S₁] [Algebra R S] {E : Type u_2} [EquivLike E S S₁] [AlgEquivClass E R S S₁] (P : Ideal S) (e : E) :
    theorem Ideal.IsDedekindDomain.ramificationIdx_ne_zero {R : Type u} [CommRing R] {S : Type v} [CommRing S] {f : R →+* S} {p : Ideal R} {P : Ideal S} [IsDedekindDomain S] (hp0 : Ideal.map f p ) (hP : P.IsPrime) (le : Ideal.map f p P) :
    noncomputable def Ideal.inertiaDeg {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] :

    The inertia degree of P : Ideal S lying over p : Ideal R is the degree of the extension (S / P) : (R / p).

    We do not assume P lies over p in the definition; we return 0 instead.

    See inertiaDeg_algebraMap for the common case where f = algebraMap R S and there is an algebra structure R / p → S / P.

    Equations
    Instances For
      @[simp]
      theorem Ideal.inertiaDeg_of_subsingleton {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hp : p.IsMaximal] [hQ : Subsingleton (S P)] :
      p.inertiaDeg P = 0
      @[simp]
      theorem Ideal.inertiaDeg_algebraMap {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [P.LiesOver p] [p.IsMaximal] :
      p.inertiaDeg P = Module.finrank (R p) (S P)
      theorem Ideal.inertiaDeg_pos {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [p.IsMaximal] [Module.Finite R S] [P.LiesOver p] :
      0 < p.inertiaDeg P
      theorem Ideal.inertiaDeg_comap_eq {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) {S₁ : Type u_1} [CommRing S₁] [Algebra R S₁] [Algebra R S] (e : S ≃ₐ[R] S₁) (P : Ideal S₁) [p.IsMaximal] :
      p.inertiaDeg (Ideal.comap e P) = p.inertiaDeg P
      theorem Ideal.inertiaDeg_map_eq {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) {S₁ : Type u_1} [CommRing S₁] [Algebra R S₁] [Algebra R S] [p.IsMaximal] (P : Ideal S) {E : Type u_2} [EquivLike E S S₁] [AlgEquivClass E R S S₁] (e : E) :
      p.inertiaDeg (Ideal.map e P) = p.inertiaDeg P
      theorem Ideal.FinrankQuotientMap.span_eq_top {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [Algebra R S] {K : Type u_1} [Field K] [Algebra R K] {L : Type u_2} [Field L] [Algebra S L] [IsFractionRing S L] [IsDomain R] [IsDomain S] [Algebra K L] [Module.Finite R S] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] [Algebra.IsAlgebraic R S] [NoZeroSMulDivisors R K] (hp : p ) (b : Set S) (hb' : Submodule.span R b Submodule.restrictScalars R (Ideal.map (algebraMap R S) p) = ) :

      If b mod p spans S/p as R/p-space, then b itself spans Frac(S) as K-space.

      Here,

      • p is an ideal of R such that R / p is nontrivial
      • K is a field that has an embedding of R (in particular we can take K = Frac(R))
      • L is a field extension of K
      • S is the integral closure of R in L

      More precisely, we avoid quotients in this statement and instead require that b ∪ pS spans S.

      theorem Ideal.FinrankQuotientMap.linearIndependent_of_nontrivial {R : Type u} [CommRing R] {S : Type v} [CommRing S] [Algebra R S] (K : Type u_1) [Field K] [Algebra R K] {V : Type u_3} {V' : Type u_4} {V'' : Type u_5} [AddCommGroup V] [Module R V] [Module K V] [IsScalarTower R K V] [AddCommGroup V'] [Module R V'] [Module S V'] [IsScalarTower R S V'] [AddCommGroup V''] [Module R V''] [hRK : IsFractionRing R K] [IsDedekindDomain R] (hRS : RingHom.ker (algebraMap R S) ) (f : V'' →ₗ[R] V) (hf : Function.Injective f) (f' : V'' →ₗ[R] V') {ι : Type u_6} {b : ιV''} (hb' : LinearIndependent S (f' b)) :

      Let V be a vector space over K = Frac(R), S / R a ring extension and V' a module over S. If b, in the intersection V'' of V and V', is linear independent over S in V', then it is linear independent over R in V.

      The statement we prove is actually slightly more general:

      • it suffices that the inclusion algebraMap R S : R → S is nontrivial
      • the function f' : V'' → V' doesn't need to be injective
      theorem Ideal.finrank_quotient_map {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [Algebra R S] (K : Type u_1) [Field K] [Algebra R K] (L : Type u_2) [Field L] [Algebra S L] [IsFractionRing S L] [hRK : IsFractionRing R K] [IsDomain S] [IsDedekindDomain R] [Algebra K L] [Algebra R L] [IsScalarTower R K L] [IsScalarTower R S L] [hp : p.IsMaximal] [Module.Finite R S] :

      If p is a maximal ideal of R, and S is the integral closure of R in L, then the dimension [S/pS : R/p] is equal to [Frac(S) : Frac(R)].

      noncomputable instance Ideal.Quotient.algebraQuotientPowRamificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] :

      R / p has a canonical map to S / (P ^ e), where e is the ramification index of P over p.

      Equations
      def Ideal.Quotient.algebraQuotientOfRamificationIdxNeZero {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] :
      Algebra (R p) (S P)

      If P lies over p, then R / p has a canonical map to S / P.

      This can't be an instance since the map f : R → S is generally not inferable.

      Equations
      Instances For
        @[simp]
        def Ideal.powQuotSuccInclusion {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] (i : ) :

        The inclusion (P^(i + 1) / P^e) ⊂ (P^i / P^e).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Ideal.powQuotSuccInclusion_apply_coe {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] (i : ) (x : (Ideal.map (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (P ^ (i + 1)))) :
          ((p.powQuotSuccInclusion P i) x) = x
          theorem Ideal.powQuotSuccInclusion_injective {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] (i : ) :
          Function.Injective (p.powQuotSuccInclusion P i)
          noncomputable def Ideal.quotientToQuotientRangePowQuotSuccAux {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] {i : } {a : S} (a_mem : a P ^ i) :
          S P(Ideal.map (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (P ^ i)) LinearMap.range (p.powQuotSuccInclusion P i)

          S ⧸ P embeds into the quotient by P^(i+1) ⧸ P^e as a subspace of P^i ⧸ P^e. See quotientToQuotientRangePowQuotSucc for this as a linear map, and quotientRangePowQuotSuccInclusionEquiv for this as a linear equivalence.

          Equations
          Instances For
            theorem Ideal.quotientToQuotientRangePowQuotSuccAux_mk {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] {i : } {a : S} (a_mem : a P ^ i) (x : S) :
            p.quotientToQuotientRangePowQuotSuccAux P a_mem (Submodule.Quotient.mk x) = Submodule.Quotient.mk (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (a * x),
            noncomputable def Ideal.quotientToQuotientRangePowQuotSucc {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] {i : } {a : S} (a_mem : a P ^ i) :
            S P →ₗ[R p] (Ideal.map (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (P ^ i)) LinearMap.range (p.powQuotSuccInclusion P i)

            S ⧸ P embeds into the quotient by P^(i+1) ⧸ P^e as a subspace of P^i ⧸ P^e.

            Equations
            • p.quotientToQuotientRangePowQuotSucc P a_mem = { toFun := p.quotientToQuotientRangePowQuotSuccAux P a_mem, map_add' := , map_smul' := }
            Instances For
              theorem Ideal.quotientToQuotientRangePowQuotSucc_mk {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] {i : } {a : S} (a_mem : a P ^ i) (x : S) :
              (p.quotientToQuotientRangePowQuotSucc P a_mem) (Submodule.Quotient.mk x) = Submodule.Quotient.mk (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (a * x),
              theorem Ideal.quotientToQuotientRangePowQuotSucc_injective {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] [IsDedekindDomain S] [P.IsPrime] {i : } (hi : i < Ideal.ramificationIdx (algebraMap R S) p P) {a : S} (a_mem : a P ^ i) (a_not_mem : aP ^ (i + 1)) :
              Function.Injective (p.quotientToQuotientRangePowQuotSucc P a_mem)
              theorem Ideal.quotientToQuotientRangePowQuotSucc_surjective {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] [IsDedekindDomain S] (hP0 : P ) [hP : P.IsPrime] {i : } (hi : i < Ideal.ramificationIdx (algebraMap R S) p P) {a : S} (a_mem : a P ^ i) (a_not_mem : aP ^ (i + 1)) :
              Function.Surjective (p.quotientToQuotientRangePowQuotSucc P a_mem)
              noncomputable def Ideal.quotientRangePowQuotSuccInclusionEquiv {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] [IsDedekindDomain S] [P.IsPrime] (hP : P ) {i : } (hi : i < Ideal.ramificationIdx (algebraMap R S) p P) :
              ((Ideal.map (Ideal.Quotient.mk (P ^ Ideal.ramificationIdx (algebraMap R S) p P)) (P ^ i)) LinearMap.range (p.powQuotSuccInclusion P i)) ≃ₗ[R p] S P

              Quotienting P^i / P^e by its subspace P^(i+1) ⧸ P^e is R ⧸ p-linearly isomorphic to S ⧸ P.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem Ideal.rank_pow_quot_aux {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] [IsDedekindDomain S] [p.IsMaximal] [P.IsPrime] (hP0 : P ) {i : } (hi : i < Ideal.ramificationIdx (algebraMap R S) p P) :

                Since the inclusion (P^(i + 1) / P^e) ⊂ (P^i / P^e) has a kernel isomorphic to P / S, [P^i / P^e : R / p] = [P^(i+1) / P^e : R / p] + [P / S : R / p]

                theorem Ideal.rank_pow_quot {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [hfp : NeZero (Ideal.ramificationIdx (algebraMap R S) p P)] [IsDedekindDomain S] [p.IsMaximal] [P.IsPrime] (hP0 : P ) (i : ) (hi : i Ideal.ramificationIdx (algebraMap R S) p P) :
                theorem Ideal.rank_prime_pow_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [IsDedekindDomain S] [p.IsMaximal] [P.IsPrime] (hP0 : P ) (he : Ideal.ramificationIdx (algebraMap R S) p P 0) :

                If p is a maximal ideal of R, S extends R and P^e lies over p, then the dimension [S/(P^e) : R/p] is equal to e * [S/P : R/p].

                theorem Ideal.finrank_prime_pow_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) (P : Ideal S) [Algebra R S] [IsDedekindDomain S] (hP0 : P ) [p.IsMaximal] [P.IsPrime] (he : Ideal.ramificationIdx (algebraMap R S) p P 0) :

                If p is a maximal ideal of R, S extends R and P^e lies over p, then the dimension [S/(P^e) : R/p], as a natural number, is equal to e * [S/P : R/p].

                Properties of the factors of p.map (algebraMap R S) #

                theorem Ideal.Factors.ne_bot {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                P
                instance Ideal.Factors.isPrime {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                (↑P).IsPrime
                instance Ideal.Factors.isScalarTower {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                IsScalarTower R (R p) (S P)
                instance Ideal.Factors.liesOver {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] [p.IsMaximal] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                (↑P).LiesOver p
                theorem Ideal.Factors.finrank_pow_ramificationIdx {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] [p.IsMaximal] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                Module.finrank (R p) (S P ^ Ideal.ramificationIdx (algebraMap R S) p P) = Ideal.ramificationIdx (algebraMap R S) p P * p.inertiaDeg P
                instance Ideal.Factors.finiteDimensional_quotient_pow {R : Type u} [CommRing R] {S : Type v} [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] [Module.Finite R S] [p.IsMaximal] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) :
                noncomputable def Ideal.Factors.piQuotientEquiv {R : Type u} [CommRing R] {S : Type v} [CommRing S] [IsDedekindDomain S] [Algebra R S] (p : Ideal R) (hp : Ideal.map (algebraMap R S) p ) :
                S Ideal.map (algebraMap R S) p ≃+* ((P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) → S P ^ Ideal.ramificationIdx (algebraMap R S) p P)

                Chinese remainder theorem for a ring of integers: if the prime ideal p : Ideal R factors in S as ∏ i, P i ^ e i, then S ⧸ I factors as Π i, R ⧸ (P i ^ e i).

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Ideal.Factors.piQuotientEquiv_mk {R : Type u} [CommRing R] {S : Type v} [CommRing S] [IsDedekindDomain S] [Algebra R S] (p : Ideal R) (hp : Ideal.map (algebraMap R S) p ) (x : S) :
                  @[simp]
                  theorem Ideal.Factors.piQuotientEquiv_map {R : Type u} [CommRing R] {S : Type v} [CommRing S] [IsDedekindDomain S] [Algebra R S] (p : Ideal R) (hp : Ideal.map (algebraMap R S) p ) (x : R) :
                  (Ideal.Factors.piQuotientEquiv p hp) ((algebraMap R (S Ideal.map (algebraMap R S) p)) x) = fun (x_1 : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) => (Ideal.Quotient.mk (x_1 ^ Ideal.ramificationIdx (algebraMap R S) p x_1)) ((algebraMap R S) x)
                  noncomputable def Ideal.Factors.piQuotientLinearEquiv {R : Type u} [CommRing R] (S : Type v) [CommRing S] [IsDedekindDomain S] [Algebra R S] (p : Ideal R) (hp : Ideal.map (algebraMap R S) p ) :
                  (S Ideal.map (algebraMap R S) p) ≃ₗ[R p] (P : { x : Ideal S // x (UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset }) → S P ^ Ideal.ramificationIdx (algebraMap R S) p P

                  Chinese remainder theorem for a ring of integers: if the prime ideal p : Ideal R factors in S as ∏ i, P i ^ e i, then S ⧸ I factors R ⧸ I-linearly as Π i, R ⧸ (P i ^ e i).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem Ideal.sum_ramification_inertia {R : Type u} [CommRing R] (S : Type v) [CommRing S] (p : Ideal R) [IsDedekindDomain S] [Algebra R S] (K : Type u_1) (L : Type u_2) [Field K] [Field L] [IsDedekindDomain R] [Algebra R K] [IsFractionRing R K] [Algebra S L] [IsFractionRing S L] [Algebra K L] [Algebra R L] [IsScalarTower R S L] [IsScalarTower R K L] [Module.Finite R S] [p.IsMaximal] (hp0 : p ) :
                    P(UniqueFactorizationMonoid.factors (Ideal.map (algebraMap R S) p)).toFinset, Ideal.ramificationIdx (algebraMap R S) p P * p.inertiaDeg P = Module.finrank K L

                    The fundamental identity of ramification index e and inertia degree f: for P ranging over the primes lying over p, ∑ P, e P * f P = [Frac(S) : Frac(R)]; here S is a finite R-module (and thus Frac(S) : Frac(R) is a finite extension) and p is maximal.

                    theorem Ideal.ramificationIdx_tower {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [IsDedekindDomain S] [IsDedekindDomain T] {f : R →+* S} {g : S →+* T} {p : Ideal R} {P : Ideal S} {Q : Ideal T} [hpm : P.IsPrime] [hqm : Q.IsPrime] (hg0 : Ideal.map g P ) (hfg : Ideal.map (g.comp f) p ) (hg : Ideal.map g P Q) :
                    theorem Ideal.ramificationIdx_algebra_tower {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra S T] [Algebra R T] [IsScalarTower R S T] [IsDedekindDomain S] [IsDedekindDomain T] {p : Ideal R} {P : Ideal S} {Q : Ideal T} [hpm : P.IsPrime] [hqm : Q.IsPrime] (hg0 : Ideal.map (algebraMap S T) P ) (hfg : Ideal.map (algebraMap R T) p ) (hg : Ideal.map (algebraMap S T) P Q) :

                    Let T / S / R be a tower of algebras, p, P, Q be ideals in R, S, T respectively, and P and Q are prime. If P = Q ∩ S, then e (Q | p) = e (P | p) * e (Q | P).

                    theorem Ideal.inertiaDeg_algebra_tower {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra S T] [Algebra R T] [IsScalarTower R S T] (p : Ideal R) (P : Ideal S) (I : Ideal T) [p.IsMaximal] [P.IsMaximal] [P.LiesOver p] [I.LiesOver P] :
                    p.inertiaDeg I = p.inertiaDeg P * P.inertiaDeg I

                    Let T / S / R be a tower of algebras, p, P, I be ideals in R, S, T, respectively, and p and P are maximal. If p = P ∩ S and P = I ∩ S, then f (I | p) = f (P | p) * f (I | P).

                    @[deprecated Ideal.inertiaDeg_algebra_tower (since := "2024-12-09")]
                    theorem Ideal.inertiaDeg_tower {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra S T] [Algebra R T] [IsScalarTower R S T] (p : Ideal R) (P : Ideal S) (I : Ideal T) [p.IsMaximal] [P.IsMaximal] [P.LiesOver p] [I.LiesOver P] :
                    p.inertiaDeg I = p.inertiaDeg P * P.inertiaDeg I

                    Alias of Ideal.inertiaDeg_algebra_tower.


                    Let T / S / R be a tower of algebras, p, P, I be ideals in R, S, T, respectively, and p and P are maximal. If p = P ∩ S and P = I ∩ S, then f (I | p) = f (P | p) * f (I | P).