Integral algebras #
Main definitions #
Let R
be a CommRing
and let A
be an R-algebra.
Algebra.IsIntegral R A
: An algebra is integral if every element of the extension is integral over the base ring.
An algebra is integral if every element of the extension is integral over the base ring.
- isIntegral : ∀ (x : A), IsIntegral R x
Instances
theorem
Algebra.IsIntegral.isIntegral
{R : Type u_1}
{A : Type u_3}
:
∀ {inst : CommRing R} {inst_1 : Ring A} {inst_2 : Algebra R A} [self : Algebra.IsIntegral R A] (x : A), IsIntegral R x
theorem
Algebra.isIntegral_def
{R : Type u_1}
{A : Type u_3}
[CommRing R]
[Ring A]
[Algebra R A]
:
Algebra.IsIntegral R A ↔ ∀ (x : A), IsIntegral R x