Discriminant of cyclotomic fields #
We compute the discriminant of a p ^ n
-th cyclotomic extension.
Main results #
IsCyclotomicExtension.discr_odd_prime
: ifp
is an odd prime such thatIsCyclotomicExtension {p} K L
andIrreducible (cyclotomic p K)
, thendiscr K (hζ.powerBasis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)
for anyhζ : IsPrimitiveRoot ζ p
.
The discriminant of the power basis given by a primitive root of unity ζ
is the same as the
discriminant of the power basis given by ζ - 1
.
If p
is a prime and IsCyclotomicExtension {p ^ (k + 1)} K L
, then the discriminant of
hζ.powerBasis K
is (-1) ^ ((p ^ (k + 1).totient) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))
if Irreducible (cyclotomic (p ^ (k + 1)) K))
, and p ^ (k + 1) ≠ 2
.
If p
is a prime and IsCyclotomicExtension {p ^ (k + 1)} K L
, then the discriminant of
hζ.powerBasis K
is (-1) ^ (p ^ k * (p - 1) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))
if Irreducible (cyclotomic (p ^ (k + 1)) K))
, and p ^ (k + 1) ≠ 2
.
If p
is a prime and IsCyclotomicExtension {p ^ k} K L
, then the discriminant of
hζ.powerBasis K
is (-1) ^ ((p ^ k).totient / 2) * p ^ (p ^ (k - 1) * ((p - 1) * k - 1))
if Irreducible (cyclotomic (p ^ k) K))
. Beware that in the cases p ^ k = 1
and p ^ k = 2
the formula uses 1 / 2 = 0
and 0 - 1 = 0
. It is useful only to have a uniform result.
See also IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow
.
If p
is a prime and IsCyclotomicExtension {p ^ k} K L
, then there are u : ℤˣ
and
n : ℕ
such that the discriminant of hζ.powerBasis K
is u * p ^ n
. Often this is enough and
less cumbersome to use than IsCyclotomicExtension.discr_prime_pow
.
If p
is an odd prime and IsCyclotomicExtension {p} K L
, then
discr K (hζ.powerBasis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)
if
Irreducible (cyclotomic p K)
.