Discriminant of a family of vectors #
Given an A
-algebra B
and b
, an ι
-indexed family of elements of B
, we define the
discriminant of b
as the determinant of the matrix whose (i j)
-th element is the trace of
b i * b j
.
Main definition #
Algebra.discr A b
: the discriminant ofb : ι → B
.
Main results #
Algebra.discr_zero_of_not_linearIndependent
: ifb
is not linear independent, thenAlgebra.discr A b = 0
.Algebra.discr_of_matrix_vecMul
andAlgebra.discr_of_matrix_mulVec
: formulas relatingAlgebra.discr A ι b
withAlgebra.discr A (b ᵥ* P.map (algebraMap A B))
andAlgebra.discr A (P.map (algebraMap A B) *ᵥ b)
.Algebra.discr_not_zero_of_basis
: over a field, ifb
is a basis, thenAlgebra.discr K b ≠ 0
.Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two
: ifL/K
is a field extension andb : ι → L
, thendiscr K b
is the square of the determinant of the matrix whose(i, j)
coefficient isσⱼ (b i)
, whereσⱼ : L →ₐ[K] E
is the embedding in an algebraically closed fieldE
corresponding toj : ι
via a bijectione : ι ≃ (L →ₐ[K] E)
.Algebra.discr_powerBasis_eq_prod
: the discriminant of a power basis.Algebra.discr_isIntegral
: ifK
andL
are fields andIsScalarTower R K L
, ifb : ι → L
satisfies∀ i, IsIntegral R (b i)
, thenIsIntegral R (discr K b)
.Algebra.discr_mul_isIntegral_mem_adjoin
: letK
be the fraction field of an integrally closed domainR
and letL
be a finite separable extension ofK
. LetB : PowerBasis K L
be such thatIsIntegral R B.gen
. Then for all,z : L
we have(discr K B.basis) • z ∈ adjoin R ({B.gen} : Set L)
.
Implementation details #
Our definition works for any A
-algebra B
, but note that if B
is not free as an A
-module,
then trace A B = 0
by definition, so discr A b = 0
for any b
.
Given an A
-algebra B
and b
, an ι
-indexed family of elements of B
, we define
discr A ι b
as the determinant of traceMatrix A ι b
.
Equations
- Algebra.discr A b = (Algebra.traceMatrix A b).det
Instances For
Mapping a family of vectors along an AlgEquiv
preserves the discriminant.
If b
is not linear independent, then Algebra.discr A b = 0
.
Relation between Algebra.discr A ι b
and
Algebra.discr A (b ᵥ* P.map (algebraMap A B))
.
Relation between Algebra.discr A ι b
and
Algebra.discr A ((P.map (algebraMap A B)) *ᵥ b)
.
If b
is a basis of a finite separable field extension L/K
, then Algebra.discr K b ≠ 0
.
If b
is a basis of a finite separable field extension L/K
,
then Algebra.discr K b
is a unit.
If L/K
is a field extension and b : ι → L
, then discr K b
is the square of the
determinant of the matrix whose (i, j)
coefficient is σⱼ (b i)
, where σⱼ : L →ₐ[K] E
is the
embedding in an algebraically closed field E
corresponding to j : ι
via a bijection
e : ι ≃ (L →ₐ[K] E)
.
The discriminant of a power basis.
A variation of Algebra.discr_powerBasis_eq_prod
.
A variation of Algebra.discr_powerBasis_eq_prod
.
Formula for the discriminant of a power basis using the norm of the field extension.
If K
and L
are fields and IsScalarTower R K L
, and b : ι → L
satisfies
∀ i, IsIntegral R (b i)
, then IsIntegral R (discr K b)
.
Let K
be the fraction field of an integrally closed domain R
and let L
be a finite
separable extension of K
. Let B : PowerBasis K L
be such that IsIntegral R B.gen
.
Then for all, z : L
that are integral over R
, we have
(discr K B.basis) • z ∈ adjoin R ({B.gen} : Set L)
.
Two (finite) ℤ-bases have the same discriminant.