Main definitions and results #
In a field extension K/k
finGaloisGroup L
: The (finite) Galois groupGal(L/k)
associated to aL : FiniteGaloisIntermediateField k K
L
.finGaloisGroupMap
: ForFiniteGaloisIntermediateField
sL₁
andL₂
withL₂ ≤ L₁
giving the restriction ofGal(L₁/k)
toGal(L₂/k)
finGaloisGroupFunctor
: MappingFiniteGaloisIntermediateField
ordered by inverse inclusion to its corresponding Galois Group asFiniteGrp
.
The (finite) Galois group Gal(L / k)
associated to a
L : FiniteGaloisIntermediateField k K
L
.
Equations
- L.finGaloisGroup = FiniteGrp.of (↥L.toIntermediateField ≃ₐ[k] ↥L.toIntermediateField)
Instances For
For FiniteGaloisIntermediateField
s L₁
and L₂
with L₂ ≤ L₁
the restriction homomorphism from Gal(L₁/k)
to Gal(L₂/k)
Equations
- finGaloisGroupMap le = FiniteGrp.ofHom (AlgEquiv.restrictNormalHom ↥(Opposite.unop L₂).toIntermediateField)
Instances For
The functor from FiniteGaloisIntermediateField
(ordered by reverse inclusion) to FiniteGrp
,
mapping each intermediate field K/L/k
to Gal (L/k)
.
Equations
- One or more equations did not get rendered due to their size.