Documentation

Mathlib.Condensed.Light.Module

Light condensed R-modules #

This files defines light condensed modules over a ring R.

Main results #

@[reducible, inline]
abbrev LightCondMod (R : Type u) [Ring R] :
Type (u + 1)

The category of condensed R-modules, defined as sheaves of R-modules over CompHaus with respect to the coherent Grothendieck topology.

Equations
Instances For
    noncomputable instance instAbelianLightCondMod (R : Type u) [Ring R] :
    Equations

    The left adjoint to the forgetful functor. The free condensed R-module on a condensed set.

    Equations
    Instances For
      @[reducible, inline]
      abbrev LightCondAb :

      The category of condensed abelian groups, defined as sheaves of abelian groups over CompHaus with respect to the coherent Grothendieck topology.

      Equations
      Instances For
        @[simp]
        theorem LightCondMod.hom_naturality_apply (R : Type u) [Ring R] {X : LightCondMod R} {Y : LightCondMod R} (f : X Y) {S : LightProfiniteᵒᵖ} {T : LightProfiniteᵒᵖ} (g : S T) (x : (X.val.obj S)) :
        (f.val.app T) ((X.val.map g) x) = (Y.val.map g) ((f.val.app S) x)