Light condensed objects #
This file defines the category of light condensed objects in a category C
, following the work
of Clausen-Scholze (see https://www.youtube.com/playlist?list=PLx5f8IelFRgGmu6gmL-Kf_Rl_6Mm7juZO).
def
LightCondensed
(C : Type w)
[CategoryTheory.Category.{v, w} C]
:
Type (max (max (max (u + 1) w) u) v)
LightCondensed.{u} C
is the category of light condensed objects in a category C
, which are
defined as sheaves on LightProfinite.{u}
with respect to the coherent Grothendieck topology.
Instances For
Equations
- instCategoryLightCondensed = inferInstance
@[reducible, inline]
Light condensed sets. Because LightProfinite
is an essentially small category, we don't need the
same universe bump as in CondensedSet
.
Equations
- LightCondSet = LightCondensed (Type ?u.3)
Instances For
@[simp]
theorem
LightCondensed.id_val
{C : Type w}
[CategoryTheory.Category.{v, w} C]
(X : LightCondensed C)
:
@[simp]
theorem
LightCondensed.comp_val
{C : Type w}
[CategoryTheory.Category.{v, w} C]
{X : LightCondensed C}
{Y : LightCondensed C}
{Z : LightCondensed C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
(CategoryTheory.CategoryStruct.comp f g).val = CategoryTheory.CategoryStruct.comp f.val g.val
theorem
LightCondensed.hom_ext_iff
{C : Type w}
[CategoryTheory.Category.{v, w} C]
{X : LightCondensed C}
{Y : LightCondensed C}
{f : X ⟶ Y}
{g : X ⟶ Y}
:
f = g ↔ ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S
theorem
LightCondensed.hom_ext
{C : Type w}
[CategoryTheory.Category.{v, w} C]
{X : LightCondensed C}
{Y : LightCondensed C}
(f : X ⟶ Y)
(g : X ⟶ Y)
(h : ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S)
:
f = g
@[simp]
theorem
LightCondSet.hom_naturality_apply
{X : LightCondSet}
{Y : LightCondSet}
(f : X ⟶ Y)
{S : LightProfiniteᵒᵖ}
{T : LightProfiniteᵒᵖ}
(g : S ⟶ T)
(x : X.val.obj S)
:
f.val.app T (X.val.map g x) = Y.val.map g (f.val.app S x)