The category of left R-modules is abelian. #
Additionally, two linear maps are exact in the categorical sense iff range f = ker g
.
def
ModuleCat.normalMono
{R : Type u}
[Ring R]
{M : ModuleCat R}
{N : ModuleCat R}
(f : M ⟶ N)
(hf : CategoryTheory.Mono f)
:
In the category of modules, every monomorphism is normal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
ModuleCat.normalEpi
{R : Type u}
[Ring R]
{M : ModuleCat R}
{N : ModuleCat R}
(f : M ⟶ N)
(hf : CategoryTheory.Epi f)
:
In the category of modules, every epimorphism is normal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The category of R-modules is abelian.
Equations
- ModuleCat.abelian = CategoryTheory.Abelian.mk
Equations
- ⋯ = ⋯
Equations
- ModuleCat.forgetReflectsLimitsOfSize = CategoryTheory.Limits.reflectsLimitsOfReflectsIsomorphisms
Equations
- ModuleCat.forget₂ReflectsLimitsOfSize = CategoryTheory.Limits.reflectsLimitsOfReflectsIsomorphisms
Equations
- ModuleCat.forgetReflectsLimits = ModuleCat.forgetReflectsLimitsOfSize
Equations
- ModuleCat.forget₂ReflectsLimits = ModuleCat.forget₂ReflectsLimitsOfSize