AB axioms in condensed modules #
This file proves that the category of condensed modules over a ring satisfies Grothendieck's axioms AB5, AB4, and AB4*.
theorem
Condensed.hasExactColimitsOfShape
(A : Type u_1)
(J : Type u_2)
[CategoryTheory.Category.{u_4, u_1} A]
[CategoryTheory.Category.{u_3, u_2} J]
[CategoryTheory.Preadditive A]
[∀ (X : CompHausᵒᵖ), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.StructuredArrow X Stonean.toCompHaus.op) A]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) A]
[CategoryTheory.HasWeakSheafify (CategoryTheory.extensiveTopology Stonean) A]
[CategoryTheory.Limits.HasColimitsOfShape J A]
[CategoryTheory.HasExactColimitsOfShape J A]
[CategoryTheory.Limits.HasFiniteLimits A]
:
theorem
Condensed.hasExactLimitsOfShape
(A : Type u_1)
(J : Type u_2)
[CategoryTheory.Category.{u_4, u_1} A]
[CategoryTheory.Category.{u_3, u_2} J]
[CategoryTheory.Preadditive A]
[∀ (X : CompHausᵒᵖ), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.StructuredArrow X Stonean.toCompHaus.op) A]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology CompHaus) A]
[CategoryTheory.HasWeakSheafify (CategoryTheory.extensiveTopology Stonean) A]
[CategoryTheory.Limits.HasLimitsOfShape J A]
[CategoryTheory.HasExactLimitsOfShape J A]
[CategoryTheory.Limits.HasFiniteColimits A]
: