AB axioms in sheaf categories #
If J
is a Grothendieck topology on a small category C : Type v
,
and A : Type u₁
(with Category.{v} A
) is a Grothendieck abelian category,
then Sheaf J A
is a Grothendieck abelian category.
instance
CategoryTheory.Sheaf.instHasExactColimitsOfShapeOfHasFiniteLimitsOfPreservesColimitsOfShapeFunctorOppositeSheafToPresheaf
{C : Type u}
{A : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} K]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.HasWeakSheafify J A]
[CategoryTheory.Limits.HasFiniteLimits A]
[CategoryTheory.Limits.HasColimitsOfShape K A]
[CategoryTheory.HasExactColimitsOfShape K A]
[CategoryTheory.Limits.PreservesColimitsOfShape K (CategoryTheory.sheafToPresheaf J A)]
:
instance
CategoryTheory.Sheaf.instHasExactLimitsOfShapeOfHasFiniteColimitsOfPreservesFiniteColimitsFunctorOppositeSheafToPresheaf
{C : Type u}
{A : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} K]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.HasWeakSheafify J A]
[CategoryTheory.Limits.HasFiniteColimits A]
[CategoryTheory.Limits.HasLimitsOfShape K A]
[CategoryTheory.HasExactLimitsOfShape K A]
[CategoryTheory.Limits.PreservesFiniteColimits (CategoryTheory.sheafToPresheaf J A)]
:
instance
CategoryTheory.Sheaf.hasFilteredColimitsOfSize
{C : Type u}
{A : Type u₁}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.HasSheafify J A]
[CategoryTheory.Limits.HasFilteredColimitsOfSize.{v₂, u₂, v₁, u₁} A]
:
instance
CategoryTheory.Sheaf.hasExactColimitsOfShape
{C : Type u}
{A : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} K]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.Limits.HasFiniteLimits A]
[CategoryTheory.HasSheafify J A]
[CategoryTheory.Limits.HasColimitsOfShape K A]
[CategoryTheory.HasExactColimitsOfShape K A]
:
instance
CategoryTheory.Sheaf.ab5ofSize
{C : Type u}
{A : Type u₁}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Category.{v₁, u₁} A]
(J : CategoryTheory.GrothendieckTopology C)
[CategoryTheory.Limits.HasFiniteLimits A]
[CategoryTheory.HasSheafify J A]
[CategoryTheory.Limits.HasFilteredColimitsOfSize.{v₂, u₂, v₁, u₁} A]
[CategoryTheory.AB5OfSize.{v₂, u₂, v₁, u₁} A]
:
instance
CategoryTheory.Sheaf.instIsGrothendieckAbelian
{C : Type v}
[CategoryTheory.SmallCategory C]
(J : CategoryTheory.GrothendieckTopology C)
(A : Type u₁)
[CategoryTheory.Category.{v, u₁} A]
[CategoryTheory.Abelian A]
[CategoryTheory.IsGrothendieckAbelian A]
[CategoryTheory.HasSheafify J A]
: