Documentation

Mathlib.CategoryTheory.Triangulated.Functor

Triangulated functors #

In this file, when C and D are categories equipped with a shift by and F : C ⥤ D is a functor which commutes with the shift, we define the induced functor F.mapTriangle : Triangle C ⥤ Triangle D on the categories of triangles. When C and D are pretriangulated, a triangulated functor is such a functor F which also sends distinguished triangles to distinguished triangles: this defines the typeclass Functor.IsTriangulated.

The functor Triangle C ⥤ Triangle D that is induced by a functor F : C ⥤ D which commutes with shift by .

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]

    The functor F.mapTriangle commutes with the shift.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      @[simp]
      @[simp]
      @[simp]
      @[simp]
      @[simp]
      Equations
      • F.instCommShiftTriangleMapTriangleInt = { iso := F.mapTriangleCommShiftIso, zero := , add := }

      F.mapTriangle commutes with the rotation of triangles.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        F.mapTriangle commutes with the inverse of the rotation of triangles.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The canonical isomorphism (𝟭 C).mapTriangle ≅ 𝟭 (Triangle C).

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The canonical isomorphism (F ⋙ G).mapTriangle ≅ F.mapTriangle ⋙ G.mapTriangle.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def CategoryTheory.Functor.mapTriangleIso {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] {F₁ : CategoryTheory.Functor C D} {F₂ : CategoryTheory.Functor C D} (e : F₁ F₂) [F₁.CommShift ] [F₂.CommShift ] [CategoryTheory.NatTrans.CommShift e.hom ] :
              F₁.mapTriangle F₂.mapTriangle

              Two isomorphic functors F₁ and F₂ induce isomorphic functors F₁.mapTriangle and F₂.mapTriangle if the isomorphism F₁ ≅ F₂ is compatible with the shifts.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                A functor which commutes with the shift by is triangulated if it sends distinguished triangles to distinguished triangles.

                • map_distinguished : TCategoryTheory.Pretriangulated.distinguishedTriangles, F.mapTriangle.obj T CategoryTheory.Pretriangulated.distinguishedTriangles
                Instances
                  theorem CategoryTheory.Functor.IsTriangulated.map_distinguished {C : Type u_1} {D : Type u_2} :
                  ∀ {inst : CategoryTheory.Category.{u_4, u_1} C} {inst_1 : CategoryTheory.Category.{u_5, u_2} D} {inst_2 : CategoryTheory.HasShift C } {inst_3 : CategoryTheory.HasShift D } {F : CategoryTheory.Functor C D} {inst_4 : F.CommShift } {inst_5 : CategoryTheory.Limits.HasZeroObject C} {inst_6 : CategoryTheory.Limits.HasZeroObject D} {inst_7 : CategoryTheory.Preadditive C} {inst_8 : CategoryTheory.Preadditive D} {inst_9 : ∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive} {inst_10 : ∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive} {inst_11 : CategoryTheory.Pretriangulated C} {inst_12 : CategoryTheory.Pretriangulated D} [self : F.IsTriangulated], TCategoryTheory.Pretriangulated.distinguishedTriangles, F.mapTriangle.obj T CategoryTheory.Pretriangulated.distinguishedTriangles
                  theorem CategoryTheory.Functor.map_distinguished {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] (F : CategoryTheory.Functor C D) [F.CommShift ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroObject D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Pretriangulated D] [F.IsTriangulated] (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T CategoryTheory.Pretriangulated.distinguishedTriangles) :
                  F.mapTriangle.obj T CategoryTheory.Pretriangulated.distinguishedTriangles
                  theorem CategoryTheory.Functor.mem_mapTriangle_essImage_of_distinguished {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] (F : CategoryTheory.Functor C D) [F.CommShift ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroObject D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Pretriangulated D] [F.IsTriangulated] [F.mapArrow.EssSurj] (T : CategoryTheory.Pretriangulated.Triangle D) (hT : T CategoryTheory.Pretriangulated.distinguishedTriangles) :
                  ∃ (T' : CategoryTheory.Pretriangulated.Triangle C) (_ : T' CategoryTheory.Pretriangulated.distinguishedTriangles), Nonempty (F.mapTriangle.obj T' T)
                  def CategoryTheory.Triangulated.Octahedron.map {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroObject D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Pretriangulated D] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) (F : CategoryTheory.Functor C D) [F.CommShift ] [F.IsTriangulated] :

                  The image of an octahedron by a triangulated functor.

                  Equations
                  • h.map F = { m₁ := F.map h.m₁, m₃ := F.map h.m₃, comm₁ := , comm₂ := , comm₃ := , comm₄ := , mem := }
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Triangulated.Octahedron.map_m₁ {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroObject D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Pretriangulated D] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) (F : CategoryTheory.Functor C D) [F.CommShift ] [F.IsTriangulated] :
                    (h.map F).m₁ = F.map h.m₁
                    @[simp]
                    theorem CategoryTheory.Triangulated.Octahedron.map_m₃ {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.HasShift C ] [CategoryTheory.HasShift D ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasZeroObject D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] [∀ (n : ), (CategoryTheory.shiftFunctor C n).Additive] [∀ (n : ), (CategoryTheory.shiftFunctor D n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Pretriangulated D] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) (F : CategoryTheory.Functor C D) [F.CommShift ] [F.IsTriangulated] :
                    (h.map F).m₃ = F.map h.m₃

                    If F : C ⥤ D is a triangulated functor from a triangulated category, then D is also triangulated if tuples of composables arrows in D can be lifted to C.