Simplicial categories #
A simplicial category is a category C
that is enriched over the
category of simplicial sets in such a way that morphisms in
C
identify to the 0
-simplices of the enriched hom.
TODO #
- construct a simplicial category structure on simplicial objects, so that it applies in particular to simplicial sets
- obtain the adjunction property
(K ⊗ X ⟶ Y) ≃ (K ⟶ sHom X Y)
whenK
,X
, andY
are simplicial sets - develop the notion of "simplicial tensor"
K ⊗ₛ X : C
withK : SSet
andX : C
an object in a simplicial categoryC
- define the notion of path between
0
-simplices of simplicial sets - deduce the notion of homotopy between morphisms in a simplicial category
- obtain that homotopies in simplicial categories can be interpreted as given
by morphisms
Δ[1] ⊗ X ⟶ Y
.
References #
- [Daniel G. Quillen, Homotopical algebra, II §1][quillen-1967]
@[reducible, inline]
abbrev
CategoryTheory.SimplicialCategory
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
Type (max (max u (v + 1)) v)
A simplicial category is a category C
that is enriched over the
category of simplicial sets in such a way that morphisms in
C
identify to the 0
-simplices of the enriched hom.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.SimplicialCategory.sHom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.SimplicialCategory C]
(K : C)
(L : C)
:
Abbreviation for the enriched hom of a simplicial category.
Equations
Instances For
@[reducible, inline]
abbrev
CategoryTheory.SimplicialCategory.sHomComp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.SimplicialCategory C]
(K : C)
(L : C)
(M : C)
:
Abbreviation for the enriched composition in a simplicial category.
Equations
Instances For
def
CategoryTheory.SimplicialCategory.homEquiv'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.SimplicialCategory C]
(K : C)
(L : C)
:
(K ⟶ L) ≃ (CategoryTheory.SimplicialCategory.sHom K L).obj (Opposite.op (SimplexCategory.mk 0))
The bijection (K ⟶ L) ≃ sHom K L _[0]
for all objects K
and L
in a simplicial category.
Equations
- CategoryTheory.SimplicialCategory.homEquiv' K L = (CategoryTheory.eHomEquiv SSet).trans (CategoryTheory.SimplicialCategory.sHom K L).unitHomEquiv
Instances For
@[reducible, inline]
noncomputable abbrev
CategoryTheory.SimplicialCategory.sHomFunctor
(C : Type u)
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.SimplicialCategory C]
:
The bifunctor Cᵒᵖ ⥤ C ⥤ SSet.{v}
which sends K : Cᵒᵖ
and L : C
to sHom K.unop L
.