The monoidal category structure on simplicial sets #
This file defines an instance of chosen finite products
for the category SSet
. It follows from the fact
the SSet
if a category of functors to the category
of types and that the category of types have chosen
finite products. As a result, we obtain a monoidal
category structure on SSet
.
Equations
- SSet.instChosenFiniteProducts = inferInstance
@[simp]
theorem
SSet.leftUnitor_hom_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj (𝟙_ SSet) K).obj Δ)
:
(CategoryTheory.MonoidalCategory.leftUnitor K).hom.app Δ x = x.2
@[simp]
theorem
SSet.leftUnitor_inv_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : K.obj Δ)
:
(CategoryTheory.MonoidalCategory.leftUnitor K).inv.app Δ x = (PUnit.unit, x)
@[simp]
theorem
SSet.rightUnitor_hom_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj K (𝟙_ SSet)).obj Δ)
:
(CategoryTheory.MonoidalCategory.rightUnitor K).hom.app Δ x = x.1
@[simp]
theorem
SSet.rightUnitor_inv_app_apply
(K : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : K.obj Δ)
:
(CategoryTheory.MonoidalCategory.rightUnitor K).inv.app Δ x = (x, PUnit.unit)
@[simp]
theorem
SSet.tensorHom_app_apply
{K : SSet}
{K' : SSet}
{L : SSet}
{L' : SSet}
(f : K ⟶ K')
(g : L ⟶ L')
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ)
:
(CategoryTheory.MonoidalCategory.tensorHom f g).app Δ x = (f.app Δ x.1, g.app Δ x.2)
@[simp]
theorem
SSet.whiskerLeft_app_apply
(K : SSet)
{L : SSet}
{L' : SSet}
(g : L ⟶ L')
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ)
:
(CategoryTheory.MonoidalCategory.whiskerLeft K g).app Δ x = (x.1, g.app Δ x.2)
@[simp]
theorem
SSet.whiskerRight_app_apply
{K : SSet}
{K' : SSet}
(f : K ⟶ K')
(L : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ)
:
(CategoryTheory.MonoidalCategory.whiskerRight f L).app Δ x = (f.app Δ x.1, x.2)
@[simp]
theorem
SSet.associator_hom_app_apply
(K : SSet)
(L : SSet)
(M : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.MonoidalCategory.tensorObj K L) M).obj Δ)
:
(CategoryTheory.MonoidalCategory.associator K L M).hom.app Δ x = (x.1.1, x.1.2, x.2)
@[simp]
theorem
SSet.associator_inv_app_apply
(K : SSet)
(L : SSet)
(M : SSet)
{Δ : SimplexCategoryᵒᵖ}
(x : (CategoryTheory.MonoidalCategory.tensorObj K (CategoryTheory.MonoidalCategory.tensorObj L M)).obj Δ)
:
(CategoryTheory.MonoidalCategory.associator K L M).inv.app Δ x = ((x.1, x.2.1), x.2.2)
The bijection (𝟙_ SSet ⟶ K) ≃ K _[0]
.
Equations
- One or more equations did not get rendered due to their size.