Documentation

Mathlib.Algebra.Homology.DerivedCategory.ExactFunctor

An exact functor induces a functor on derived categories #

In this file, we show that if F : C₁ ⥤ C₂ is an exact functor between abelian categories, then there is an induced triangulated functor F.mapDerivedCategory : DerivedCategory C₁ ⥤ DerivedCategory C₂.

The functor DerivedCategory C₁ ⥤ DerivedCategory C₂ induced by an exact functor F : C₁ ⥤ C₂ between abelian categories.

Equations
Instances For
    noncomputable def CategoryTheory.Functor.mapDerivedCategoryFactors {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] [CategoryTheory.Abelian C₁] [HasDerivedCategory C₁] {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] [CategoryTheory.Abelian C₂] [HasDerivedCategory C₂] (F : CategoryTheory.Functor C₁ C₂) [F.Additive] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] :
    DerivedCategory.Q.comp F.mapDerivedCategory (F.mapHomologicalComplex (ComplexShape.up )).comp DerivedCategory.Q

    The functor F.mapDerivedCategory is induced by F.mapHomologicalComplex (ComplexShape.up ℤ).

    Equations
    Instances For
      Equations
      • F.instLiftingCochainComplexIntDerivedCategoryQQuasiIsoUpCompHomologicalComplexMapHomologicalComplexMapDerivedCategory = { iso' := F.mapDerivedCategoryFactors }
      noncomputable def CategoryTheory.Functor.mapDerivedCategoryFactorsh {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] [CategoryTheory.Abelian C₁] [HasDerivedCategory C₁] {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] [CategoryTheory.Abelian C₂] [HasDerivedCategory C₂] (F : CategoryTheory.Functor C₁ C₂) [F.Additive] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] :
      DerivedCategory.Qh.comp F.mapDerivedCategory (F.mapHomotopyCategory (ComplexShape.up )).comp DerivedCategory.Qh

      The functor F.mapDerivedCategory is induced by F.mapHomotopyCategory (ComplexShape.up ℤ).

      Equations
      • F.mapDerivedCategoryFactorsh = F.mapHomologicalComplexUpToQuasiIsoFactorsh (ComplexShape.up )
      Instances For
        theorem CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] [CategoryTheory.Abelian C₁] [HasDerivedCategory C₁] {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] [CategoryTheory.Abelian C₂] [HasDerivedCategory C₂] (F : CategoryTheory.Functor C₁ C₂) [F.Additive] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] (K : CochainComplex C₁ ) :
        F.mapDerivedCategoryFactorsh.hom.app ((HomotopyCategory.quotient C₁ (ComplexShape.up )).obj K) = CategoryTheory.CategoryStruct.comp (F.mapDerivedCategory.map ((DerivedCategory.quotientCompQhIso C₁).hom.app K)) (CategoryTheory.CategoryStruct.comp (F.mapDerivedCategoryFactors.hom.app K) (CategoryTheory.CategoryStruct.comp ((DerivedCategory.quotientCompQhIso C₂).inv.app ((F.mapHomologicalComplex (ComplexShape.up )).obj K)) (DerivedCategory.Qh.map ((F.mapHomotopyCategoryFactors (ComplexShape.up )).inv.app K))))
        Equations
        • F.instLiftingHomotopyCategoryIntUpDerivedCategoryQhQuasiIsoCompMapHomotopyCategoryMapDerivedCategory = { iso' := F.mapDerivedCategoryFactorsh }
        Equations
        • One or more equations did not get rendered due to their size.