Documentation

Mathlib.CategoryTheory.Localization.Predicate

Predicate for localized categories #

In this file, a predicate L.IsLocalization W is introduced for a functor L : C ⥤ D and W : MorphismProperty C: it expresses that L identifies D with the localized category of C with respect to W (up to equivalence).

We introduce a universal property StrictUniversalPropertyFixedTarget L W E which states that L inverts the morphisms in W and that all functors C ⥤ E inverting W uniquely factors as a composition of L ⋙ G with G : D ⥤ E. Such universal properties are inputs for the constructor IsLocalization.mk' for L.IsLocalization W.

When L : C ⥤ D is a localization functor for W : MorphismProperty (i.e. when [L.IsLocalization W] holds), for any category E, there is an equivalence FunctorEquivalence L W E : (D ⥤ E) ≌ (W.FunctorsInverting E) that is induced by the composition with the functor L. When two functors F : C ⥤ E and F' : D ⥤ E correspond via this equivalence, we shall say that F' lifts F, and the associated isomorphism L ⋙ F' ≅ F is the datum that is part of the class Lifting L W F F'. The functions liftNatTrans and liftNatIso can be used to lift natural transformations and natural isomorphisms between functors.

The predicate expressing that, up to equivalence, a functor L : C ⥤ D identifies the category D with the localized category of C with respect to W : MorphismProperty C.

  • inverts : W.IsInvertedBy L

    the functor inverts the given MorphismProperty

  • isEquivalence : (CategoryTheory.Localization.Construction.lift L ).IsEquivalence

    the induced functor from the constructed localized category is an equivalence

Instances
    theorem CategoryTheory.Functor.IsLocalization.inverts {C : Type u_1} {D : Type u_2} :
    ∀ {inst : CategoryTheory.Category.{u_4, u_1} C} {inst_1 : CategoryTheory.Category.{u_5, u_2} D} {L : CategoryTheory.Functor C D} {W : CategoryTheory.MorphismProperty C} [self : L.IsLocalization W], W.IsInvertedBy L

    the functor inverts the given MorphismProperty

    the induced functor from the constructed localized category is an equivalence

    This universal property states that a functor L : C ⥤ D inverts morphisms in W and the all functors D ⥤ E (for a fixed category E) uniquely factors through L.

    • inverts : W.IsInvertedBy L

      the functor L inverts W

    • lift : (F : CategoryTheory.Functor C E) → W.IsInvertedBy FCategoryTheory.Functor D E

      any functor C ⥤ E which inverts W can be lifted as a functor D ⥤ E

    • fac : ∀ (F : CategoryTheory.Functor C E) (hF : W.IsInvertedBy F), L.comp (self.lift F hF) = F

      there is a factorisation involving the lifted functor

    • uniq : ∀ (F₁ F₂ : CategoryTheory.Functor D E), L.comp F₁ = L.comp F₂F₁ = F₂

      uniqueness of the lifted functor

    Instances For

      The localized category W.Localization that was constructed satisfies the universal property of the localization.

      Equations
      Instances For

        When W consists of isomorphisms, the identity satisfies the universal property of the localization.

        Equations
        Instances For
          def CategoryTheory.Localization.isoOfHom {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W] {X : C} {Y : C} (f : X Y) (hf : W f) :
          L.obj X L.obj Y

          The isomorphism L.obj X ≅ L.obj Y that is deduced from a morphism f : X ⟶ Y which belongs to W, when L.IsLocalization W.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_hom {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W] {X : C} {Y : C} (f : X Y) (hf : W f) :

            A chosen equivalence of categories W.Localization ≅ D for a functor L : C ⥤ D which satisfies L.IsLocalization W. This shall be used in order to deduce properties of L from properties of W.Q.

            Equations
            Instances For

              Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors W.Q and L.

              Equations
              Instances For

                Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors L and W.Q.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The functor (D ⥤ E) ⥤ W.functors_inverting E induced by the composition with a localization functor L : C ⥤ D with respect to W : morphism_property C.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The equivalence of categories (D ⥤ E) ≌ (W.FunctorsInverting E) induced by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                    Equations
                    Instances For

                      The functor (D ⥤ E) ⥤ (C ⥤ E) given by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                      Equations
                      Instances For
                        theorem CategoryTheory.Localization.natTrans_ext {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] {E : Type u_3} [CategoryTheory.Category.{u_6, u_3} E] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W] {F₁ : CategoryTheory.Functor D E} {F₂ : CategoryTheory.Functor D E} (τ : F₁ F₂) (τ' : F₁ F₂) (h : ∀ (X : C), τ.app (L.obj X) = τ'.app (L.obj X)) :
                        τ = τ'

                        When L : C ⥤ D is a localization functor for W : MorphismProperty C and F : C ⥤ E is a functor, we shall say that F' : D ⥤ E lifts F if the obvious diagram is commutative up to an isomorphism.

                        • iso' : L.comp F' F

                          the isomorphism relating the localization functor and the two other given functors

                        Instances

                          Given a localization functor L : C ⥤ D for W : MorphismProperty C and a functor F : C ⥤ E which inverts W, this is a choice of functor D ⥤ E which lifts F.

                          Equations
                          Instances For
                            Equations
                            • One or more equations did not get rendered due to their size.

                            The canonical isomorphism L ⋙ lift F hF L ≅ F for any functor F : C ⥤ E which inverts W, when L : C ⥤ D is a localization functor for W.

                            Equations
                            Instances For

                              Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural transformation τ : F₁ ⟶ F₂ uniquely lifts to a natural transformation F₁' ⟶ F₂'.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural isomorphism τ : F₁ ⟶ F₂ lifts to a natural isomorphism F₁' ⟶ F₂'.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  Given a localization functor L : C ⥤ D for W : MorphismProperty C, if F₁' : D ⥤ E lifts a functor F₁ : C ⥤ D, then a functor F₂' which is isomorphic to F₁' also lifts a functor F₂ that is isomorphic to F₁.

                                  Equations
                                  Instances For
                                    theorem CategoryTheory.Functor.IsLocalization.of_iso {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] (W : CategoryTheory.MorphismProperty C) {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} (e : L₁ L₂) [L₁.IsLocalization W] :
                                    L₂.IsLocalization W
                                    theorem CategoryTheory.Functor.IsLocalization.of_equivalence_target {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_6, u_1} C] [CategoryTheory.Category.{u_7, u_2} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) {E : Type u_4} [CategoryTheory.Category.{u_5, u_4} E] (L' : CategoryTheory.Functor C E) (eq : D E) [L.IsLocalization W] (e : L.comp eq.functor L') :
                                    L'.IsLocalization W

                                    If L : C ⥤ D is a localization for W : MorphismProperty C, then it is also the case of a functor obtained by post-composing L with an equivalence of categories.

                                    Equations
                                    • =
                                    def CategoryTheory.Localization.uniq {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_7, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] (L₁ : CategoryTheory.Functor C D₁) (L₂ : CategoryTheory.Functor C D₂) (W' : CategoryTheory.MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                    D₁ D₂

                                    If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, this is an equivalence of categories D₁ ≌ D₂.

                                    Equations
                                    Instances For
                                      theorem CategoryTheory.Localization.uniq_symm {C : Type u_1} [CategoryTheory.Category.{u_8, u_1} C] {D₁ : Type u_4} {D₂ : Type u_5} [CategoryTheory.Category.{u_6, u_4} D₁] [CategoryTheory.Category.{u_7, u_5} D₂] (L₁ : CategoryTheory.Functor C D₁) (L₂ : CategoryTheory.Functor C D₂) (W' : CategoryTheory.MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                      def CategoryTheory.Localization.compUniqFunctor {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_7, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] (L₁ : CategoryTheory.Functor C D₁) (L₂ : CategoryTheory.Functor C D₂) (W' : CategoryTheory.MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                      L₁.comp (CategoryTheory.Localization.uniq L₁ L₂ W').functor L₂

                                      The functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def CategoryTheory.Localization.compUniqInverse {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_7, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] (L₁ : CategoryTheory.Functor C D₁) (L₂ : CategoryTheory.Functor C D₂) (W' : CategoryTheory.MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                        L₂.comp (CategoryTheory.Localization.uniq L₁ L₂ W').inverse L₁

                                        The inverse functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                        Equations
                                        Instances For
                                          def CategoryTheory.Localization.isoUniqFunctor {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [CategoryTheory.Category.{u_7, u_5} D₁] [CategoryTheory.Category.{u_8, u_6} D₂] (L₁ : CategoryTheory.Functor C D₁) (L₂ : CategoryTheory.Functor C D₂) (W' : CategoryTheory.MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] (F : CategoryTheory.Functor D₁ D₂) (e : L₁.comp F L₂) :
                                          F (CategoryTheory.Localization.uniq L₁ L₂ W').functor

                                          If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, any functor F : D₁ ⥤ D₂ equipped with an isomorphism L₁ ⋙ F ≅ L₂ is isomorphic to the functor of the equivalence given by uniq.

                                          Equations
                                          Instances For

                                            The property that two morphisms become equal in the localized category.

                                            Equations
                                            Instances For