Documentation

Mathlib.Algebra.Category.Grp.Biproducts

The category of abelian groups has finite biproducts #

Construct limit data for a binary product in AddCommGrp, using AddCommGrp.of (G × H).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def AddCommGrp.biprodIsoProd (G H : AddCommGrp) :
    G H of (G × H)

    We verify that the biproduct in AddCommGrp is isomorphic to the cartesian product of the underlying types:

    Equations
    Instances For
      def AddCommGrp.HasLimit.lift {J : Type w} (f : JAddCommGrp) (s : CategoryTheory.Limits.Fan f) :
      s.pt of ((j : J) → (f j))

      The map from an arbitrary cone over an indexed family of abelian groups to the cartesian product of those groups.

      Equations
      Instances For
        @[simp]
        theorem AddCommGrp.HasLimit.lift_hom_apply {J : Type w} (f : JAddCommGrp) (s : CategoryTheory.Limits.Fan f) (x : s.1) (j : J) :
        (Hom.hom (lift f s)) x j = (CategoryTheory.ConcreteCategory.hom (s.π.app { as := j })) x

        Construct limit data for a product in AddCommGrp, using AddCommGrp.of (∀ j, F.obj j).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem AddCommGrp.HasLimit.productLimitCone_cone_pt_coe {J : Type w} (f : JAddCommGrp) :
          (productLimitCone f).cone.pt = ((j : J) → (f j))
          noncomputable def AddCommGrp.biproductIsoPi {J : Type} [Finite J] (f : JAddCommGrp) :
          f of ((j : J) → (f j))

          We verify that the biproduct we've just defined is isomorphic to the AddCommGrp structure on the dependent function type.

          Equations
          Instances For