The category of additive commutative groups is preadditive. #
Equations
- AddCommGrpCat.instAddHom = { add := fun (f g : M ⟶ N) => AddCommGrpCat.ofHom (AddCommGrpCat.Hom.hom f + AddCommGrpCat.Hom.hom g) }
@[simp]
theorem
AddCommGrpCat.hom_add_apply
{P Q : AddCommGrpCat}
(f g : P ⟶ Q)
(x : ↑P)
:
(CategoryTheory.ConcreteCategory.hom (f + g)) x = (CategoryTheory.ConcreteCategory.hom f) x + (CategoryTheory.ConcreteCategory.hom g) x
Equations
- AddCommGrpCat.instZeroHom_1 = { zero := AddCommGrpCat.ofHom 0 }
Equations
- AddCommGrpCat.instSMulNatHom = { smul := fun (n : ℕ) (f : M ⟶ N) => AddCommGrpCat.ofHom (n • AddCommGrpCat.Hom.hom f) }
@[simp]
Equations
- AddCommGrpCat.instNegHom = { neg := fun (f : M ⟶ N) => AddCommGrpCat.ofHom (-AddCommGrpCat.Hom.hom f) }
@[simp]
Equations
- AddCommGrpCat.instSubHom = { sub := fun (f g : M ⟶ N) => AddCommGrpCat.ofHom (AddCommGrpCat.Hom.hom f - AddCommGrpCat.Hom.hom g) }
@[simp]
Equations
- AddCommGrpCat.instSMulIntHom = { smul := fun (n : ℤ) (f : M ⟶ N) => AddCommGrpCat.ofHom (n • AddCommGrpCat.Hom.hom f) }
@[simp]
Equations
- P.instAddCommGroupHom Q = Function.Injective.addCommGroup AddCommGrpCat.Hom.hom ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- AddCommGrpCat.instPreadditive = { homGroup := inferInstance, add_comp := AddCommGrpCat.instPreadditive._proof_1, comp_add := AddCommGrpCat.instPreadditive._proof_2 }
AddCommGrpCat.Hom.hom
bundled as an additive equivalence.
Equations
- AddCommGrpCat.homAddEquiv = { toEquiv := CategoryTheory.ConcreteCategory.homEquiv, map_add' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
AddCommGrpCat.homAddEquiv_symm_apply_hom
{M N : AddCommGrpCat}
(a✝ : CategoryTheory.ToHom M N)
: