The category of coalgebras over a commutative ring #
We introduce the bundled category CoalgebraCat
of coalgebras over a fixed commutative ring R
along with the forgetful functor to ModuleCat
.
This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat
.
The category of R
-coalgebras.
- carrier : Type v
- isAddCommGroup : AddCommGroup ↑self.toModuleCat
- isModule : Module R ↑self.toModuleCat
- instCoalgebra : Coalgebra R ↑self.toModuleCat
Instances For
Equations
- CoalgebraCat.instCoeSortType = { coe := fun (x : CoalgebraCat R) => ↑x.toModuleCat }
@[simp]
theorem
CoalgebraCat.moduleCat_of_toModuleCat
{R : Type u}
[CommRing R]
(X : CoalgebraCat R)
:
ModuleCat.of R ↑X.toModuleCat = X.toModuleCat
@[simp]
theorem
CoalgebraCat.of_instCoalgebra
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
(CoalgebraCat.of R X).instCoalgebra = inferInstance
@[simp]
theorem
CoalgebraCat.of_carrier
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
↑(CoalgebraCat.of R X).toModuleCat = X
@[simp]
theorem
CoalgebraCat.of_isAddCommGroup
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
(CoalgebraCat.of R X).isAddCommGroup = inst✝²
@[simp]
theorem
CoalgebraCat.of_isModule
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
(CoalgebraCat.of R X).isModule = inst✝¹
def
CoalgebraCat.of
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
The object in the category of R
-coalgebras associated to an R
-coalgebra.
Equations
- CoalgebraCat.of R X = { toModuleCat := ModuleCat.mk X, instCoalgebra := inferInstance }
Instances For
@[simp]
theorem
CoalgebraCat.of_comul
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
Coalgebra.comul = Coalgebra.comul
@[simp]
theorem
CoalgebraCat.of_counit
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
Coalgebra.counit = Coalgebra.counit
theorem
CoalgebraCat.Hom.ext_iff
{R : Type u}
:
∀ {inst : CommRing R} {V W : CoalgebraCat R} {x y : V.Hom W}, x = y ↔ x.toCoalgHom = y.toCoalgHom
theorem
CoalgebraCat.Hom.ext
{R : Type u}
:
∀ {inst : CommRing R} {V W : CoalgebraCat R} {x y : V.Hom W}, x.toCoalgHom = y.toCoalgHom → x = y
structure
CoalgebraCat.Hom
{R : Type u}
[CommRing R]
(V : CoalgebraCat R)
(W : CoalgebraCat R)
:
Type v
A type alias for CoalgHom
to avoid confusion between the categorical and
algebraic spellings of composition.
The underlying
CoalgHom
Instances For
theorem
CoalgebraCat.Hom.toCoalgHom_injective
{R : Type u}
[CommRing R]
(V : CoalgebraCat R)
(W : CoalgebraCat R)
:
Function.Injective CoalgebraCat.Hom.toCoalgHom
Equations
- CoalgebraCat.category = CategoryTheory.Category.mk ⋯ ⋯ ⋯
theorem
CoalgebraCat.hom_ext_iff
{R : Type u}
[CommRing R]
{M : CoalgebraCat R}
{N : CoalgebraCat R}
{f : M ⟶ N}
{g : M ⟶ N}
:
theorem
CoalgebraCat.hom_ext
{R : Type u}
[CommRing R]
{M : CoalgebraCat R}
{N : CoalgebraCat R}
(f : M ⟶ N)
(g : M ⟶ N)
(h : f.toCoalgHom = g.toCoalgHom)
:
f = g
@[reducible, inline]
abbrev
CoalgebraCat.ofHom
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(f : X →ₗc[R] Y)
:
CoalgebraCat.of R X ⟶ CoalgebraCat.of R Y
Typecheck a CoalgHom
as a morphism in CoalgebraCat R
.
Equations
- CoalgebraCat.ofHom f = { toCoalgHom := f }
Instances For
@[simp]
theorem
CoalgebraCat.toCoalgHom_comp
{R : Type u}
[CommRing R]
{M : CoalgebraCat R}
{N : CoalgebraCat R}
{U : CoalgebraCat R}
(f : M ⟶ N)
(g : N ⟶ U)
:
(CategoryTheory.CategoryStruct.comp f g).toCoalgHom = g.toCoalgHom.comp f.toCoalgHom
@[simp]
theorem
CoalgebraCat.toCoalgHom_id
{R : Type u}
[CommRing R]
{M : CoalgebraCat R}
:
(CategoryTheory.CategoryStruct.id M).toCoalgHom = CoalgHom.id R ↑M.toModuleCat
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CoalgebraCat.forget₂_obj
{R : Type u}
[CommRing R]
(X : CoalgebraCat R)
:
(CategoryTheory.forget₂ (CoalgebraCat R) (ModuleCat R)).obj X = ModuleCat.of R ↑X.toModuleCat
@[simp]
theorem
CoalgebraCat.forget₂_map
{R : Type u}
[CommRing R]
(X : CoalgebraCat R)
(Y : CoalgebraCat R)
(f : X ⟶ Y)
:
(CategoryTheory.forget₂ (CoalgebraCat R) (ModuleCat R)).map f = ↑f.toCoalgHom
@[simp]
theorem
CoalgEquiv.toCoalgebraCatIso_hom_toCoalgHom
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
e.toCoalgebraCatIso.hom.toCoalgHom = ↑e
@[simp]
theorem
CoalgEquiv.toCoalgebraCatIso_inv_toCoalgHom
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
e.toCoalgebraCatIso.inv.toCoalgHom = ↑e.symm
def
CoalgEquiv.toCoalgebraCatIso
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
CoalgebraCat.of R X ≅ CoalgebraCat.of R Y
Build an isomorphism in the category CoalgebraCat R
from a
CoalgEquiv
.
Equations
- e.toCoalgebraCatIso = { hom := CoalgebraCat.ofHom ↑e, inv := CoalgebraCat.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
CoalgEquiv.toCoalgebraCatIso_refl
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
(CoalgEquiv.refl R X).toCoalgebraCatIso = CategoryTheory.Iso.refl (CoalgebraCat.of R X)
@[simp]
theorem
CoalgEquiv.toCoalgebraCatIso_symm
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
e.symm.toCoalgebraCatIso = e.toCoalgebraCatIso.symm
@[simp]
theorem
CoalgEquiv.toCoalgebraCatIso_trans
{R : Type u}
[CommRing R]
{X : Type v}
{Y : Type v}
{Z : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[AddCommGroup Z]
[Module R Z]
[Coalgebra R X]
[Coalgebra R Y]
[Coalgebra R Z]
(e : X ≃ₗc[R] Y)
(f : Y ≃ₗc[R] Z)
:
def
CategoryTheory.Iso.toCoalgEquiv
{R : Type u}
[CommRing R]
{X : CoalgebraCat R}
{Y : CoalgebraCat R}
(i : X ≅ Y)
:
Build a CoalgEquiv
from an isomorphism in the category
CoalgebraCat R
.
Equations
- i.toCoalgEquiv = { toCoalgHom := i.hom.toCoalgHom, invFun := ⇑i.inv.toCoalgHom, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_toCoalgHom
{R : Type u}
[CommRing R]
{X : CoalgebraCat R}
{Y : CoalgebraCat R}
(i : X ≅ Y)
:
↑i.toCoalgEquiv = i.hom.toCoalgHom
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_refl
{R : Type u}
[CommRing R]
{X : CoalgebraCat R}
:
(CategoryTheory.Iso.refl X).toCoalgEquiv = CoalgEquiv.refl R ↑X.toModuleCat
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_symm
{R : Type u}
[CommRing R]
{X : CoalgebraCat R}
{Y : CoalgebraCat R}
(e : X ≅ Y)
:
e.symm.toCoalgEquiv = e.toCoalgEquiv.symm
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_trans
{R : Type u}
[CommRing R]
{X : CoalgebraCat R}
{Y : CoalgebraCat R}
{Z : CoalgebraCat R}
(e : X ≅ Y)
(f : Y ≅ Z)
:
instance
CoalgebraCat.forget_reflects_isos
{R : Type u}
[CommRing R]
:
(CategoryTheory.forget (CoalgebraCat R)).ReflectsIsomorphisms
Equations
- ⋯ = ⋯