Navigating Files and Directories - Part 2
Overview
Teaching: 15 min
Exercises: 5 minQuestions
How can I move around on my computer?
How can I see what files and directories I have?
How can I specify the location of a file or directory on my computer?
Objectives
Explain the similarities and differences between a file and a directory.
Translate an absolute path into a relative path and vice versa.
Construct absolute and relative paths that identify specific files and directories.
Use options and arguments to change the behaviour of a shell command
Demonstrate the use of tab completion, and explain its advantages.
Video
Exploring Other Directories
Not only can we use ls
on the current working directory, but we can use it to list the contents of a different directory. Let’s take a
look at our Desktop
directory by running ls -F Desktop
,
i.e.,
the command ls
with the -F
option and the argument Desktop
.
The argument Desktop
tells ls
that
we want a listing of something other than our current working directory:
$ ls -F Desktop
data-shell/
Your output should be a list of all the files and sub-directories on your
Desktop, including the data-shell
directory you downloaded at
the setup for this lesson. Take a look at your Desktop to confirm that
your output is accurate.
As you may now see, using a bash shell is strongly dependent on the idea that your files are organized in a hierarchical file system. Organizing things hierarchically in this way helps us keep track of our work: it’s possible to put hundreds of files in our home directory, just as it’s possible to pile hundreds of printed papers on our desk, but it’s a self-defeating strategy.
Now that we know the data-shell
directory is located on our Desktop, we
can do two things.
First, we can look at its contents, using the same strategy as before, passing
a directory name to ls
:
$ ls -F Desktop/data-shell
creatures/ molecules/ notes.txt solar.pdf
data/ north-pacific-gyre/ pizza.cfg writing/
Second, we can actually change our location to a different directory, so we are no longer located in our home directory.
The command to change locations is cd
followed by a
directory name to change our working directory.
cd
stands for ‘change directory’,
which is a bit misleading:
the command doesn’t change the directory,
it changes the shell’s idea of what directory we are in.
Let’s say we want to move to the data
directory we saw above. We can
use the following series of commands to get there:
$ cd Desktop
$ cd data-shell
$ cd data
These commands will move us from our home directory onto our Desktop, then into
the data-shell
directory, then into the data
directory. You will notice that cd
doesn’t print anything. This is normal. Many shell commands will not output anything to the screen when successfully executed. But if we run pwd
after it, we can see that we are now
in /Users/nelle/Desktop/data-shell/data
.
If we run ls
without arguments now,
it lists the contents of /Users/nelle/Desktop/data-shell/data
,
because that’s where we now are:
$ pwd
/Users/nelle/Desktop/data-shell/data
$ ls -F
amino-acids.txt elements/ pdb/ salmon.txt
animals.txt morse.txt planets.txt sunspot.txt
We now know how to go down the directory tree, but how do we go up? We might try the following:
$ cd data-shell
-bash: cd: data-shell: No such file or directory
But we get an error! Why is this?
With our methods so far,
cd
can only see sub-directories inside your current directory. There are
different ways to see directories above your current location; we’ll start
with the simplest.
There is a shortcut in the shell to move up one directory level that looks like this:
$ cd ..
..
is a special directory name meaning
“the directory containing this one”,
or more succinctly,
the parent of the current directory.
Sure enough,
if we run pwd
after running cd ..
, we’re back in /Users/nelle/Desktop/data-shell
:
$ pwd
/Users/nelle/Desktop/data-shell
The special directory ..
doesn’t usually show up when we run ls
. If we want
to display it, we can give ls
the -a
option:
$ ls -F -a
./ .bash_profile data/ north-pacific-gyre/ pizza.cfg thesis/
../ creatures/ molecules/ notes.txt solar.pdf writing/
-a
stands for ‘show all’;
it forces ls
to show us file and directory names that begin with .
,
such as ..
(which, if we’re in /Users/nelle
, refers to the /Users
directory)
As you can see,
it also displays another special directory that’s just called .
,
which means ‘the current working directory’.
It may seem redundant to have a name for it,
but we’ll see some uses for it soon.
Note that in most command line tools, multiple options can be combined
with a single -
and no spaces between the options: ls -F -a
is
equivalent to ls -Fa
.
Other Hidden Files
In addition to the hidden directories
..
and.
, you may also see a file called.bash_profile
. This file usually contains shell configuration settings. You may also see other files and directories beginning with.
. These are usually files and directories that are used to configure different programs on your computer. The prefix.
is used to prevent these configuration files from cluttering the terminal when a standardls
command is used.
Orthogonality
The special names
.
and..
don’t belong tocd
; they are interpreted the same way by every program. For example, if we are in/Users/nelle/data
, the commandls ..
will give us a listing of/Users/nelle
. When the meanings of the parts are the same no matter how they’re combined, programmers say they are orthogonal: Orthogonal systems tend to be easier for people to learn because there are fewer special cases and exceptions to keep track of.
These then, are the basic commands for navigating the filesystem on your computer:
pwd
, ls
and cd
. Let’s explore some variations on those commands. What happens
if you type cd
on its own, without giving
a directory?
$ cd
How can you check what happened? pwd
gives us the answer!
$ pwd
/Users/nelle
It turns out that cd
without an argument will return you to your home directory,
which is great if you’ve gotten lost in your own filesystem.
Let’s try returning to the data
directory from before. Last time, we used
three commands, but we can actually string together the list of directories
to move to data
in one step:
$ cd Desktop/data-shell/data
Check that we’ve moved to the right place by running pwd
and ls -F
If we want to move up one level from the data directory, we could use cd ..
. But
there is another way to move to any directory, regardless of your
current location.
So far, when specifying directory names, or even a directory path (as above),
we have been using relative paths. When you use a relative path with a command
like ls
or cd
, it tries to find that location from where we are,
rather than from the root of the file system.
However, it is possible to specify the absolute path to a directory by
including its entire path from the root directory, which is indicated by a
leading slash. The leading /
tells the computer to follow the path from
the root of the file system, so it always refers to exactly one directory,
no matter where we are when we run the command.
This allows us to move to our data-shell
directory from anywhere on
the filesystem (including from inside data
). To find the absolute path
we’re looking for, we can use pwd
and then extract the piece we need
to move to data-shell
.
$ pwd
/Users/nelle/Desktop/data-shell/data
$ cd /Users/nelle/Desktop/data-shell
Run pwd
and ls -F
to ensure that we’re in the directory we expect.
Two More Shortcuts
The shell interprets the character
~
(tilde) at the start of a path to mean “the current user’s home directory”. For example, if Nelle’s home directory is/Users/nelle
, then~/data
is equivalent to/Users/nelle/data
. This only works if it is the first character in the path:here/there/~/elsewhere
is nothere/there/Users/nelle/elsewhere
.Another shortcut is the
-
(dash) character.cd
will translate-
into the previous directory I was in, which is faster than having to remember, then type, the full path. This is a very efficient way of moving back and forth between directories. The difference betweencd ..
andcd -
is that the former brings you up, while the latter brings you back. You can think of it as the Last Channel button on a TV remote.
Relative Path Resolution
Using the filesystem diagram below, if
pwd
displays/Users/thing
, what willls -F ../backup
display?
../backup: No such file or directory
2012-12-01 2013-01-08 2013-01-27
2012-12-01/ 2013-01-08/ 2013-01-27/
original/ pnas_final/ pnas_sub/
Solution
- No: there is a directory
backup
in/Users
.- No: this is the content of
Users/thing/backup
, but with..
we asked for one level further up.- No: see previous explanation.
- Yes:
../backup/
refers to/Users/backup/
.
ls
Reading ComprehensionUsing the filesystem diagram below, if
pwd
displays/Users/backup
, and-r
tellsls
to display things in reverse order, what command(s) will result in the following output:pnas_sub/ pnas_final/ original/
ls pwd
ls -r -F
ls -r -F /Users/backup
Solution
- No:
pwd
is not the name of a directory.- Yes:
ls
without directory argument lists files and directories in the current directory.- Yes: uses the absolute path explicitly.
Nelle’s Pipeline: Organizing Files
Knowing this much about files and directories,
Nelle is ready to organize the files that the protein assay machine will create.
First,
she creates a directory called north-pacific-gyre
(to remind herself where the data came from).
Inside that,
she creates a directory called 2012-07-03
,
which is the date she started processing the samples.
She used to use names like conference-paper
and revised-results
,
but she found them hard to understand after a couple of years.
(The final straw was when she found herself creating
a directory called revised-revised-results-3
.)
Sorting Output
Nelle names her directories ‘year-month-day’, with leading zeroes for months and days, because the shell displays file and directory names in alphabetical order. If she used month names, December would come before July; if she didn’t use leading zeroes, November (‘11’) would come before July (‘7’). Similarly, putting the year first means that June 2012 will come before June 2013.
Each of her physical samples is labelled according to her lab’s convention
with a unique ten-character ID,
such as ‘NENE01729A’.
This is what she used in her collection log
to record the location, time, depth, and other characteristics of the sample,
so she decides to use it as part of each data file’s name.
Since the assay machine’s output is plain text,
she will call her files NENE01729A.txt
, NENE01812A.txt
, and so on.
All 1520 files will go into the same directory.
Now in her current directory data-shell
,
Nelle can see what files she has using the command:
$ ls north-pacific-gyre/2012-07-03/
This is a lot to type, but she can let the shell do most of the work through what is called tab completion. If she types:
$ ls nor
and then presses Tab (the tab key on her keyboard), the shell automatically completes the directory name for her:
$ ls north-pacific-gyre/
If she presses Tab again,
Bash will add 2012-07-03/
to the command,
since it’s the only possible completion.
Pressing Tab again does nothing,
since there are 19 possibilities;
pressing Tab twice brings up a list of all the files,
and so on.
This is called tab completion,
and we will see it in many other tools as we go on.
Key Points
The file system is responsible for managing information on the disk.
Information is stored in files, which are stored in directories (folders).
Directories can also store other directories, which forms a directory tree.
cd path
changes the current working directory.
ls path
prints a listing of a specific file or directory;ls
on its own lists the current working directory.
pwd
prints the user’s current working directory.
/
on its own is the root directory of the whole file system.A relative path specifies a location starting from the current location.
An absolute path specifies a location from the root of the file system.
Directory names in a path are separated with
/
on Unix, but\
on Windows.
..
means ‘the directory above the current one’;.
on its own means ‘the current directory’.