Locally surjective maps of presheaves. #
Let X
be a topological space, ℱ
and 𝒢
presheaves on X
, T : ℱ ⟶ 𝒢
a map.
In this file we formulate two notions for what it means for
T
to be locally surjective:
For each open set
U
, each sectiont : 𝒢(U)
is in the image ofT
after passing to some open cover ofU
.For each
x : X
, the map of stalksTₓ : ℱₓ ⟶ 𝒢ₓ
is surjective.
We prove that these are equivalent.
def
TopCat.Presheaf.IsLocallySurjective
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
{X : TopCat}
{ℱ : TopCat.Presheaf C X}
{𝒢 : TopCat.Presheaf C X}
(T : ℱ ⟶ 𝒢)
:
A map of presheaves T : ℱ ⟶ 𝒢
is locally surjective if for any open set U
,
section t
over U
, and x ∈ U
, there exists an open set x ∈ V ⊆ U
and a section s
over V
such that $T_*(s_V) = t|_V$
.
See TopCat.Presheaf.isLocallySurjective_iff
below.
Equations
Instances For
theorem
TopCat.Presheaf.isLocallySurjective_iff
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
{X : TopCat}
{ℱ : TopCat.Presheaf C X}
{𝒢 : TopCat.Presheaf C X}
(T : ℱ ⟶ 𝒢)
:
TopCat.Presheaf.IsLocallySurjective T ↔ ∀ (U : TopologicalSpace.Opens ↑X) (t : (CategoryTheory.forget C).obj (𝒢.obj (Opposite.op U))),
∀ x ∈ U,
∃ (V : TopologicalSpace.Opens ↑X) (ι : V ⟶ U),
(∃ (s : (CategoryTheory.forget C).obj (ℱ.obj (Opposite.op V))),
(T.app (Opposite.op V)) s = TopCat.Presheaf.restrict t ι) ∧ x ∈ V
theorem
TopCat.Presheaf.locally_surjective_iff_surjective_on_stalks
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ConcreteCategory C]
{X : TopCat}
{ℱ : TopCat.Presheaf C X}
{𝒢 : TopCat.Presheaf C X}
[CategoryTheory.Limits.HasColimits C]
[CategoryTheory.Limits.PreservesFilteredColimits (CategoryTheory.forget C)]
(T : ℱ ⟶ 𝒢)
:
TopCat.Presheaf.IsLocallySurjective T ↔ ∀ (x : ↑X), Function.Surjective ⇑((TopCat.Presheaf.stalkFunctor C x).map T)
An equivalent condition for a map of presheaves to be locally surjective is for all the induced maps on stalks to be surjective.