Presheaves in C
have limits and colimits when C
does. #
instance
TopCat.instHasLimitsPresheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimits C]
(X : TopCat)
:
Equations
- ⋯ = ⋯
instance
TopCat.instHasColimitsOfSizePresheafOfHasColimits
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasColimits C]
(X : TopCat)
:
Equations
- ⋯ = ⋯
instance
TopCat.instCreatesLimitsSheafPresheafForgetOfHasLimits
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimits C]
(X : TopCat)
:
Equations
- X.instCreatesLimitsSheafPresheafForgetOfHasLimits = CategoryTheory.Sheaf.createsLimits
instance
TopCat.instHasLimitsOfSizeSheafOfHasLimits
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimits C]
(X : TopCat)
:
Equations
- ⋯ = ⋯
theorem
TopCat.isSheaf_of_isLimit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : Type v}
[CategoryTheory.SmallCategory J]
[CategoryTheory.Limits.HasLimits C]
{X : TopCat}
(F : CategoryTheory.Functor J (TopCat.Presheaf C X))
(H : ∀ (j : J), (F.obj j).IsSheaf)
{c : CategoryTheory.Limits.Cone F}
(hc : CategoryTheory.Limits.IsLimit c)
:
c.pt.IsSheaf
theorem
TopCat.limit_isSheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : Type v}
[CategoryTheory.SmallCategory J]
[CategoryTheory.Limits.HasLimits C]
{X : TopCat}
(F : CategoryTheory.Functor J (TopCat.Presheaf C X))
(H : ∀ (j : J), (F.obj j).IsSheaf)
:
(CategoryTheory.Limits.limit F).IsSheaf